Neuronal Dynamics

Bibliography

  • [1] L. F. Abbott, E. Fahri and S. Gutmann (1991) The path integral for dendritic trees. Biol. Cybern. 66, pp. 49–60. Cited by: 3.4, 6.4.4.
  • [2] L. F. Abbott and T. B. Kepler (1990) Model neurons: from Hodgkin-Huxley to Hopfield. in L. Garrido (Ed.), Statistical Mechanics of Neural Networks, Cited by: 4.2.2.
  • [3] L. F. Abbott and S. B. Nelson (2000) Synaptic plastictiy: taming the beast.. Nature Neuroscience 3, pp. 1178–1183. Cited by: 19.1.2, 19.5.
  • [4] L. F. Abbott and C. van Vreeswijk (1993) Asynchronous states in a network of pulse-coupled oscillators. Phys. Rev. E 48, pp. 1483–1490. Cited by: 12.2, 13.1, 13, 14.2.3, 5.1, 5.4.
  • [5] L. F. Abbott (1991) Realistic synaptic inputs for model neural networks.. Network 2, pp. 245–258. Cited by: 3.2.2.
  • [6] L.F. Abbott (1994) Decoding neuronal firing and modeling neural networks. Quart. Refv. Biophys. 27, pp. 291–331. Cited by: 7.6.2.
  • [7] M. Abeles (1991) Corticonics. Cambridge University Press, Cambridge. Cited by: 7.6.2, 8.3, 8.3.
  • [8] J.A. Acebron, L.L. Bonilla, C.J. Perez Vicente, F. Ritort and R. Spigler (2005) The kuramoto model: a simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77, pp. 137–185. Cited by: 20.2.3.
  • [9] E. D. Adrian (1926) The impulses produced by sensory nerve endings.. J. Physiol. (London) 61, pp. 49–72. Cited by: 7.2.1.
  • [10] Y. Ahmadian, J. Pillow and L. Paninski (2011) Efficient Markov Chain Monte Carlo methods for decoding population spike trains.. Neural Computation 1 (23), pp. 46–96. Cited by: 11.3.2, 11.3.
  • [11] Y. Ahmadian, A. M. Packer, R. Yuste and L. Paninski (2011-08) Designing optimal stimuli to control neuronal spike timing. Journal of Neurophysiology 106 (2), pp. 1038–1053. Cited by: 11.3.1.
  • [12] M. Ahrens, L. Paninski and M. Sahani (2008) Inferring input nonlinearities in neural encoding models. Network: Computation in Neural Systems 19, pp. 35–67. Cited by: 10.2.4.
  • [13] C.D. Aizenman and D.J. Linden (1999) Regulation of the rebound depolarization and spontaneous firing patterns of deep nuclear neurons in slices of rat cerebellum. J. Neurophysiology 82, pp. 1697–1709. Cited by: 2.3.5.
  • [14] T.D. Albright, R. Desimone and C.G. Gross (1984) Columnar organization of directionally selective cells in visual area mt of the macaque. J. Neurophysiol. 51, pp. 16–31. Cited by: 16.1.1.
  • [15] S. Amari (1972) Characteristics of random nets of analog neuron-like elements. IEEE transactions systems, man, cybernetics 2, pp. 643–657. Cited by: 12.4.4, 12.4.5, 12.5, 12.5, 14.
  • [16] S. Amari (1974) A method of statistical neurodynamics. Kybernetik 14, pp. 201–215. Cited by: 12.2, 12.4.5, 12.5.
  • [17] S. Amari (1977) A mathematical foundation of statistical neurodynamics. SIAM J. Applied Mathematics 33, pp. 95–126. Cited by: 12.4.5, 12.5, 18.1, 18.3.1.
  • [18] D. J. Amit, H. Gutfreund and H. Sompolinsky (1985) Storing infinite number of patterns in a spin-glass model of neural networks. Phys. Rev. Lett. 55, pp. 1530–1533. Cited by: 17.2.4, 17.4.
  • [19] D. J. Amit, H. Gutfreund and H. Sompolinsky (1987) Information storage in neural networks with low levels of activity. Phys. Rev. A 35, pp. 2293–2303. Cited by: 17.4.
  • [20] D. J. Amit and N. Brunel (1997) A model of spontaneous activity and local delay activity during delay periods in the cerebral cortex. Cerebral Cortex 7, pp. 237–252. Cited by: 12.2, 12.4.4, 12.4.4, 12.4.5, 17.4.
  • [21] D. J. Amit and N. Brunel (1997) Dynamics of a recurrent network of spiking neurons before and following learning. Network 8, pp. 373–404. Cited by: 12.4.4, 12.4.4, 12.4.5, 12.5, 17.4.
  • [22] D. J. Amit, H. Gutfreund and H. Sompolinsky (1987) Statistical mechanics of neural networks near saturation.. Ann Phys (NY) 173, pp. 30–67. Cited by: 17.2.4, 17.4.
  • [23] D. J. Amit and M. V. Tsodyks (1991) Quantitative study of attractor neural networks retrieving at low spike rates. i: substrate — spikes, rates, and neuronal gain.. Network 2, pp. 259–273. Cited by: 17.4.
  • [24] D. J. Amit (1989) Modeling brain function: the world of attractor neural networks. Cambridge University Press, Cambridge UK. Cited by: 17.2.3.
  • [25] J. A. Anderson and E. Rosenfeld (Eds.) (1988) Neurocomputing: foundations of research. MIT-Press, Cambridge Mass.. Cited by: 19.5.
  • [26] J. A. Anderson (1972) A simple neural network generating an interactive memory. Math. Biosc. 14, pp. 197–220. Cited by: 17.4, 17.4.
  • [27] A. Angelucci and P.C. Bressloff (2006) Contribution of feedforward, lateral and feedback connections to the classical receptive field center and extra-classical receptive field surround of primate v1 neurons.. Prog. Brain Res. 154, pp. 93–120. Cited by: 12.3.6.
  • [28] P. Aracri, E. Colombo, M. Mantegazza, P. Scalmani, G. Curia, G. Avanzini and S. Franceschetti (2006) Layer-specific properties of the persistent sodium current in sensorimotor cortex. Journal of Neurophysiology 95 (6), pp. 3460–3468. Cited by: 2.17.
  • [29] A. Artola, S. Bröcher and W. Singer (1990) Different voltage dependent thresholds for inducing long-term depression and long-term potentiation in slices of rat visual cortex. Nature 347, pp. 69–72. Cited by: 19.1.1, 19.2.3.
  • [30] A. Artola and W. Singer (1993) Long-term depression of excitatory synaptic transmission and its relationship to long-term potentiation. Trends Neurosci. 16 (11), pp. 480–487. Cited by: 19.1.1.
  • [31] K.E. Atkinson (1997) The numerical solution of integral equations of the second kind. Vol. 4, Cambridge university press. Cited by: 14.1.5.
  • [32] R. B. Avery and D. Johnston (1996-09) Multiple channel types contribute to the low-voltage-activated calcium current in hippocampal ca3 pyramidal neurons. J Neurosci 16 (18), pp. 5567–82. Cited by: 3.4.
  • [33] Y. Aviel and W. Gerstner (2006) From spiking neurons to rate models: a cascade model as an approximation to spiking neuron models with refractoriness. Phys. Rev. E 73, pp. 51908. Cited by: 15.3.3, 15.4.
  • [34] L. Badel, S. Lefort, R. Brette, C. Petersen, W. Gerstner and M. Richardson (2008) Dynamic i-v curves are reliable predictors of naturalistic pyramidal-neuron voltage traces.. J Neurophysiol 99, pp. 656 – 666. Cited by: 5.5, 5.6, 5.4, 5.4.
  • [35] L. Badel, S. Lefort, T.K. Berger, C. Petersen, W. Gerstner and M.J.E. Richardson (2008) Extracting non-linear integrate-and-fire models from experimental data using dynamic i-v curves. Biological Cybernetics 99 (4-5), pp. 361–370. Cited by: 5.4, 5.2.1, 5.2.1, 5.4, 5.4, 6.4.1, 6.5.
  • [36] W. Bair, C. Koch, W. Newsome and K. Britten (1994) Power spectrum analysis of MT neurons in the behaving monkey. J. Neurosci. 14, pp. 2870–2892. Cited by: 7.5.3, 7.5.3.
  • [37] W. Bair and C. Koch (1996) Temporal precision of spike trains in extrastriate cortex of the behaving macaque monekey. Neural Computation 8, pp. 1185–1202. Cited by: 7.4, 7.1.1, 7.7.
  • [38] E. Balaguer-Ballester, C.C. Lapish, J.K. Seamans and D. Durstewitz (2011) Dynamics of frontal cortex ensembles during memory-guided decision-making. PLOS Comput. Biol. 7, pp. e1002057. Cited by: 17.4.
  • [39] D. Baras and R. Meir (2007) Reinforcement learning, spike-time-dependent plasticity, and the bcm rule. Neural Computation 19 (8), pp. 2245–2279. Cited by: 19.4.
  • [40] F. Barbieri and N. Brunel (2008) Can attractor network models account for the statistics of firing during persistent activity in prefrontal cortex?. Front. Neurosci. 2, pp. 114–122. Cited by: 17.2.3, 17.4.
  • [41] H. U. Bauer and K. Pawelzik (1993) Alternating oscillatory and stochastic dynamics in a model for a neuronal assembly.. Physica D 69, pp. 380–393. Cited by: 13.1.
  • [42] M. Bazhenov and I. Timofeev (2006) Thalamocortical oscillations. Scholarpedia 1, pp. 1319. Cited by: 20.2, 20.4.
  • [43] C.C. Bell, V. Han, Y. Sugawara and K. Grant (1997) Synaptic plasticity in a cerebellum-like structure depends on temporal order. Nature 387, pp. 278–281. Cited by: 19.1.2, 19.5.
  • [44] G. Ben Arous and A. Guionnet (1995) Large deviations for langevin spin glass dynamics. Probability Theory and Related Fields 102, pp. 455–509. Cited by: 12.4.4.
  • [45] R. Ben-Yishai, R.L. Bar-Or and H. Sompolinsky (1995) Theory of orientation tuning in visual cortex. Proc. Natl. Acad. Sci. USA 92, pp. 3844–3848. Cited by: 18.2.3.
  • [46] A.L. Benabid, S. Chabardes, J. Mitrofanis and P. Pollak (2009) Deep brain stimulation of the subthalamic nucleus for the treatment of parkinson’s disease. Lancet Neurol. 8, pp. 67–81. Cited by: 20.3.
  • [47] A.L. Benabid, P. Pollak and et al. (1991) Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet 337, pp. 403–406. Cited by: 20.3, 20.3, 20.4.
  • [48] J. Benda and A. V. M. Herz (2003) A universal model for spike-frequency adaptation. Neural Computation 15 (11), pp. 2523–2564. Cited by: 15.3.4, 15.4.
  • [49] T. K. Berger, R. Perin, G. Silberberg and H. Markram (2009) Frequency-dependent disynaptic inhibition in the pyramidal network: a ubiquitous pathway in the developing rat neocortex. The Journal of Physiology 587 (22), pp. 5411–5425. Cited by: 1.12.
  • [50] Ö. Bernander, R. J. Douglas, K. A. C. Martin and C. Koch (1991) Synaptic background activity influences spatiotemporal integration in single pyramidal cells. Proc. Natl. Acad. Sci. USA 88, pp. 11569–11573. Cited by: 13.6.3.
  • [51] M. J. Berry, D. K. Warland and M. Meister (1997) The structure and precision of retinal spike trains. Proc. Nat. Ac. Sciences (USA) 94, pp. 5411–5416. Cited by: 7.1.1.
  • [52] M.J. Berry and M. Meister (1998) Refractoriness and neural precision. J. of Neuroscience 18, pp. 2200–2211. Cited by: 7.5.2.
  • [53] G-Q. Bi (2002) Spatiotemporal specificity of synaptic plasticity: cellular rules and mechanisms. Biological Cybernetics 319-332. Cited by: 19.1.2, 19.2.3.
  • [54] G.-q. Bi and M.-m. Poo (2001) Synaptic modification of correlated activity: hebb’s postulate revisited. Ann. Rev. Neurosci. 24, pp. 139–166. Cited by: 19.1.2, 19.3.1, 19.5.
  • [55] G.Q. Bi and M.M. Poo (1998) Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18, pp. 10464–10472. Cited by: 19.4, 19.1.2, 19.1.2, 19.5.
  • [56] G.Q. Bi and M.M. Poo (1999) Distributed synaptic modification in neural networks induced by patterned stimulation. Nature 401, pp. 792–796. Cited by: 19.1.2, 19.5.
  • [57] W. Bialek, F. Rieke, R. R. de Ruyter van Stevenick and D. Warland (1991) Reading a neural code.. Science 252, pp. 1854–1857. Cited by: 11, 7.6.2, 7.6.2, 7.6.2.
  • [58] E.L. Bienenstock, L.N. Cooper and P.W. Munroe (1982) Theory of the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J. Neurosci. 2, pp. 32–48. Cited by: 19.5, 19.2.1, 19.2.3, 19.5.
  • [59] S. Binczak, J. Eilbeck and A. C. Scott (2001) Ephaptic coupling of myelinated nerve fibers. Physica D: Nonlinear Phenomena 148 (1), pp. 159–174. Cited by: 3.3.2.
  • [60] T. V. P. Bliss and G. L. Collingridge (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, pp. 31–39. Cited by: 19.1.1.
  • [61] R. Bogacz, E. Brown, J. Moehlis, P. Holmes and J. Cohen (2006) The physics of optimal decision making: a formal analysis of models of performance in two-alternative forced-choice tasks. Phsychological Review 113, pp. 700–765. Cited by: 16.4.1, 16.4.2, 16.6.
  • [62] T. Bonhoeffer and A. Grinvald (1991) Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns.. Nature 353, pp. 429–431. Cited by: 12.1.1.
  • [63] J. M. Bower and D. Beeman (1995) The book of genesis. Springer, New York. Cited by: 3.4, 3.4, 3.5.
  • [64] M. Brass and P. Haggard (2007) To do or not to do: the neural signature of self-control. J. Neurosci. 27, pp. 9141–9145. Cited by: 16.5.2.
  • [65] P. C. Bressloff and J. D. Cowan (2002) The visual cortex as a crystal. Physica D: Nonlinear Phenomena 173 (3-4), pp. 226 – 258. Cited by: 12.4.
  • [66] P. C. Bressloff and J. G. Taylor (1994) Dynamics of compartmental model neurons. Neural Networks 7, pp. 1153–1165. Cited by: 6.4.4.
  • [67] R. Brette and W. Gerstner (2005) Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. J. Neurophysiol. 94, pp. 3637 – 3642. Cited by: 6.5.
  • [68] R. Brette, M. Rudolph and et al. (2007) Simulation of networks of spiking neurons: a review of tools and strategies.. J Comput Neurosci 23 (3), pp. 349–398. Cited by: 12.4.4, 12.4.5.
  • [69] D. R. Brillinger (1988) Maximum likelihood analysis of spike trains of interacting nerve cells. Biol. Cybern. 59, pp. 189–200. Cited by: 10.5, 6.5, 9.2, 9.
  • [70] D. R. Brillinger (1992) Nerve cell spike train data analysis: a progressiion of thechniques. J. American Stastistical Association 87, pp. 260–271. Cited by: 6.5.
  • [71] A. Brockwell, R. E. Kass and A. Schwartz (2007) Statistical signal processing and the motor cortex. Proceedings of the IEEE 95 (5), pp. 881–898. Cited by: 11.
  • [72] A. Brockwell, A. Rojas and R. Kass (2004) Recursive bayesian decoding of motor cortical signals by particle filtering. Journal of Neurophysiology 91 (4), pp. 1899–1907. Cited by: 11.
  • [73] E. Brown, R. Barbieri, V. Ventura, R. Kass and L. Frank (2002) The time-rescaling theorem and its application to neural spike train data analysis. Neural computation 14, pp. 325–346. Cited by: 10.3.3, 10.5, 10, 9.2.
  • [74] E. Brown, L. Frank, D. Tang, M. Quirk and M. Wilson (1998) A statistical paradigm for neural spike train decoding applied to position prediction from ensemble firing patterns of rat hippocampal place cells. Journal of Neuroscience 18, pp. 7411–7425. Cited by: 11.3.2, 11.3.
  • [75] T. H. Brown, A. H. Ganong, E. W. Kairiss, C. L. Keenan and S. R. Kelso (1989) Long-term potentation in two synaptic systems of the hippocampal brain slice.. in J.H. Byrne and W.O. Berry (Eds.), Neural models of plasticity., pp. 266–306. Cited by: 19.1.1.
  • [76] T. H. Brown, A. M. Zador, Z. F. Mainen and B. J. Claiborne (1991) Hebbian modifications in hippocampal neurons.. in M. Baudry and J.L. Davis (Eds.), Long–term potentiation., pp. 357–389. Cited by: 19.3.1.
  • [77] N. Brunel, F.S. Chance, N. Fourcaud and L.F. Abbott (2001) Effects of synaptic noise and filtering on the frequency response of spiking neurons. Physical Review Letters 86, pp. 2186–2189. Cited by: 15.9, 15.2.1, 15.2.3, 15.4.
  • [78] N. Brunel and V. Hakim (1999) Fast global oscillations in networks of integrate-and-fire neurons with low firing rates. Neural Computation 11, pp. 1621–1671. Cited by: 12.2, 12.4.4, 12.4.5, 12.5, 7., 13.1, 13.3.1, 13.3.1, 13.5.2, 13, 14.2.3, 14.3, 15.2.3, 15.2.3, 15.4, 15.2.
  • [79] N. Brunel (2000) Dynamics of sparsely connected networls of excitatory and inhibitory neurons. Computational Neuroscience 8, pp. 183–208. Cited by: 12.8, 12.2, 12.4.4, 12.4.5, 12.5, 13.7, 13.1, 13.4.2, 13.4.2, 13.4.2, 13.4.2, 13.4.2, 13.6.4, 13, 14.2.3, 14.2.3.
  • [80] H. L. Bryant and J. P. Segundo (1976) Spike inititation by transmembrane current: a white noise analysis. Journal of Physiology 260, pp. 279–314. Cited by: 7.1.1.
  • [81] J. Buck and E. Buck (1976) Synchronous fireflies. Scientific American 234, pp. 74–85. Cited by: 20.4.
  • [82] G. Bugmann, C. Christodoulou and J. G. Taylor (1997) Role of temporal integration and fluctuation detection in the highly irregular firing of leaky integrator neuron model with partial reset. Neural Computation 9, pp. 985–1000. Cited by: 8.3, 8.3.
  • [83] A. N. Burkitt and G. M. Clark (1999) Analysis of integrate-and-fire neurons: synchronization of synaptic input and spike output. Neural Computation 11, pp. 871–901. Cited by: 8.4.2.
  • [84] J. J. Bussgang (1952) Cross-correlation function of amplitude-distorted gaussian signals. Cambridge. Cited by: 11.2.1.
  • [85] G. Buzsaki (2011) Hippocampus. Scholarpedia 6, pp. 1468. Cited by: 20.2, 20.2, 20.4.
  • [86] W. Calvin and C.F. Stevens (1968) Synaptic noise and other sources of randomness in motoneuron interspike intervals. J. Neurophysiology 31, pp. 574–587. Cited by: 13.3.1.
  • [87] C.C. Canavier (2006) Phase response curve. Scholarpedia 1, pp. 1332. Cited by: 20.2.3, 20.4.
  • [88] R. M. Capocelli and L. M. Ricciardi (1971) Diffusion approximation and first passage time problem for a neuron model. Kybernetik 8, pp. 214–223. Cited by: 13, 8.4.
  • [89] N. Caporale and Y. Dan (2008) Spike timing-dependent plasticity: a hebbian learning rule. Ann. Rev. Neurosci. 31, pp. 25–46. Cited by: 19.1.2, 19.5.
  • [90] N.T. Carnevale and M.L. Hines (2006) The neuron book. Cambridge University Press. Cited by: 3.4, 3.5.
  • [91] B. Cessac, B. Doyon, M. Quoy and M. Samuleides (1994) Mean-field equations, bifurcation map and route to chaos in discrete time neural networks. Phyisca D 74, pp. 24–44. Cited by: 12.4.4, 12.4.5, 12.5.
  • [92] B. Cessac (2008) A discrete time neural network model with spiking neurons: rigorous results on the spontaneous dynamics.. J. Math. Biol. 56, pp. 311–345. Cited by: 12.5.
  • [93] M.J. Chacron, A. Longtin, M.St-Hilaire and L. Maler (2000) Suprathreshold stochastic firing dynamics with memory in p-type electroreceptors. Phys. Rev. Lett. 85, pp. 1576–1579. Cited by: 7.5.2.
  • [94] E. J. Chichilnisky (2001) A simple white noise analysis of neuronal light responses. Network 12 (199-213). Cited by: 11.2.1, 15.3.3.
  • [95] E. Chornoboy, L. Schramm and A. Karr (1988) Maximum likelihood identification of neural point process systems. Biological Cybernetics 59, pp. 265–275. Cited by: 10.2.1.
  • [96] C. C. Chow and J. White (1996) Spontaneous action potential fluctuations due to channel fluctuations. Bioph. J. 71, pp. 3013–3021. Cited by: 7.1.1.
  • [97] C. C. Chow (1998) Phase-locking in weakly heterogeneous neuronal networks. Physica D 118, pp. 343–370. Cited by: 12.2.2.
  • [98] M.M. Churchland, J.P. Cunningham, M.T. Kaufman, J.D. Foster, P. Nuyujukian, S.I. Ryu and K.V. Shenoy (2012) Neural population dynamics during reaching. Nature 487, pp. 51–56. Cited by: 20.1.2, 20.1.2.
  • [99] C. Clopath, L. Busing, E. Vasilaki and W. Gerstner (2010) Connectivity reflects coding: a model of voltage-based spike-timing-dependent-plasticity with homeostasis.. Nature Neuroscience 13, pp. 344–352. Cited by: 19.10, 19.9, 19.2.3, 19.2.3, 19.3.1, 19.5.
  • [100] M. A. Cohen and S. Grossberg (1983) Absolute stability of global pattern formation and parallel memory storage by competitive neural networks. IEEE trans. on systems, man, and cybernetics 13, pp. 815–823. Cited by: 16.4.1, 16.6.
  • [101] J.J. Collins, C.C. Chow, A.C. Capela and T.T. Imhoff (1996) Aperiodic stochastic resonance. Physical Review E 54, pp. 5575–5584. Cited by: 9.4.2, 9.
  • [102] B. W. Connors and M. J. Gutnick (1990) Intrinsic firing patterns of diverse cortical neurons. Trends in Neurosci. 13, pp. 99–104. Cited by: 1.4.1, 1.4.1.
  • [103] D. Contreras, A. Destexhe and M. Steriade (1997) Intracellular and computational characterization of the intracortical inhibitory control of synchronized thalamic inputs in vivo.. J. Neurophysiology 78 (1), pp. 335–350. Cited by: 3.4.
  • [104] T.M. Cover and J.A. Thomas (1991) Elements of information theory. Wiley, New York. Cited by: 10.4.
  • [105] D. R. Cox and P. A. W. Lewis (1966) The statistical analysis of series of events. Methuen, London. Cited by: 7.5.1, 7.5.3, 7.7.
  • [106] D. R. Cox (1962) Renewal theory. Methuen, London. Cited by: 7.5.1, 7.5.
  • [107] A. Crisanti and H. Sompolinsky (1988) Dynamics of spin systems with randomly asymmetric bonds - ising spins and glauber dynamics. Phys. Rev. A 37, pp. 4865–4874. Cited by: 12.4.5.
  • [108] S. Crochet and C.C.H. Petersen (2006) Correlating whisker behavior with membrane potential in barrel cortex of awake mice. Nature Neurosci. 9, pp. 608–610. Cited by: 13.3.1.
  • [109] S. Crochet, J. F. A. Poulet, Y. Kremer and C. C. H. Petersen (2011-03) Synaptic mechanisms underlying sparse coding of active touch. Neuron 69 (6), pp. 1160–75. Cited by: 11.1.3, 7.1.
  • [110] S. Cullheim, J. W. Fleshman, L. L. Glenn and R. E. Burke (1987) Membrane area and dendritic structure in type-identified triceps surae alpha motoneurons. J. Comp. Neurol. 255 (1), pp. 68–81. Cited by: 3.4.
  • [111] E. Curti, G. Mongillo, G. La Camera and D.J. Amit (2004) Mean field and capacity in realistic networks of spiking neurons storing sparsely coded random memories. Neural Computation 16, pp. 2597 – 2637. Cited by: 17.3.2, 17.4.
  • [112] P. Dayan and L. F. Abbott (2001) Theoretical neuroscience. MIT Press, Cambridge. Cited by: 3.1.3.
  • [113] E. de Boer and P. Kuyper (1968) Triggered correlation. IEEE Trans. Biomedical Engineering 15, pp. 169–179. Cited by: 11.2.1, 7.6.2.
  • [114] R. R. de Ruyter van Stevenick and W. Bialek (1988) Real-time performance of a movement-sensitive neuron in the blowfly visual system: coding and information transfer in short spike sequences. Proc. R. Soc. B 234, pp. 379–414. Cited by: 7.6.2.
  • [115] R. R. de Ruyter van Steveninck, G. D. Lowen, S. P. Strong, R. Koberle and W. Bialek (1997) Reproducibility and variability in neural spike trains. Science 275, pp. 1805. Cited by: 7.1.1.
  • [116] G. C. DeAngelis, I. Ohzwaw and R. D. Freeman (1995) Receptive-field dynamics in the central visual pathways. Trends in Neurosci. 18, pp. 451–458. Cited by: 7.6.2.
  • [117] D. Debanne, B.H. Gähwiler and S.M. Thompson (1998) Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures.. J. Physiol. 507, pp. 237–247. Cited by: 19.1.2, 19.5.
  • [118] D. Debanne, E. Campanac, A. Bialowas, E. Carlier and G. Alcaraz (2011) Axon physiology. Physiological reviews 91 (2), pp. 555–602. Cited by: 3.3.2.
  • [119] R.C. deCharms and M.M. Merzenich (1996) Primary cortical representation of sounds by the coordination of action-potential timing. Nature 381, pp. 610–613. Cited by: 7.6.2.
  • [120] G. Deco, E.T. Rolls and R. Romo (2009) Stochastic dynamics as a principle of brain function. Progr. Neurobiol. 88, pp. 1–16. Cited by: 16.6.
  • [121] G. Deco, E.T. Rolls and R. Romo (2010) Synaptic dynamics and decision-making. Proc. Natl. Acad. Sci. (USA) 107, pp. 7545–7549. Cited by: 16.6.
  • [122] M. Deger, R. Naud and W. Gerstner (2013) Dynamics of neuronal populations of finite size. To appear. Cited by: 14.6.
  • [123] B. Derrida, E. Gardner and A. Zippelius (1987) An exactly solvable asymmetric neural network model. Europhysics Letters 4, pp. 167–173. Cited by: 12.4.5, 17.4.
  • [124] A. Destexhe, D. Contreras, T. J. Sejnowski and M. Steriade (1994) A model of spindle rhythmicity in the isolated thalamic reticular nucleus. Journal of Neurophysiology 72 (2), pp. 803–818. Cited by: 2.3.3.
  • [125] A. Destexhe, Z. Mainen and T. Sejnowski (1994) Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism. J. Comput. Neurosci. 1, pp. 195–230. Cited by: 3.1.1, 3.1.1, 3.1.2, 3.1.
  • [126] A. Destexhe, M. Rudolph and D. Pare (2003) The high-conductance state of neocortical neurons in vivo. Nature Reviews Neuroscience 4, pp. 739–751. Cited by: 12.4.4, 13.3.1, 13.6.3, 13.6.3.
  • [127] A. Destexhe and D. Pare (1999) Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo.. Journal of Neurophysiology 81 81, pp. 1531–1547. Cited by: 3.1.1.
  • [128] C. DiMattina and K. Zhang (2011) Active data collection for efficient estimation and comparison of nonlinear neural models.. Neural Comput 23 (9), pp. 2242–88. Cited by: 10.4.
  • [129] A.J. Dobson and A.G. Barnett (2008) Introduction to generalized linear models, 3rd ed.. Chapman and Hall. Cited by: 10.5.
  • [130] J. Donoghue (2002) Connecting cortex to machines: recent advances in brain interfaces. Nature Neuroscience 5, pp. 1085–1088. Cited by: 11.3, 11.
  • [131] J. P. Donoghue, J. N. Sanes, N. G. Hatsopoulos and G. Gaál (1998) Neural discharge and local field potential oscillations in primate motor cortex during voluntary movements. Journal of Neurophysiology 79 (1), pp. 159–173. Cited by: 11.3.3.
  • [132] J.K. Douglass, L. Wilkens, E. Pantazelou and F. Moss (1993) Noise enhancement of information transfer in crayfish mechanoreceptors by stochastic resonance. Nature 365, pp. 337–340. Cited by: 9.
  • [133] S. Druckmann, Y. Bannitt, A. A. Gidon, F. Schuermann and I. Segev (2007-11) A novel multiple objective optimization framework for constraining conductance-based neuron models by experimental data. Front Neurosci 1, pp. 1. Cited by: 10.5, 11.1.3.
  • [134] R. Eckhorn, R. Bauer, W. Jordan, M. Brosch, W. Kruse, M. Munk and H. J. Reitboeck (1988) Coherent oscillations: a mechanism of feature linking in the visual cortex?. Biol. Cybern. 60, pp. 121–130. Cited by: 7.6.2.
  • [135] R. Eckhorn, F. Krause and J. L. Nelson (1993) The rf-cinematogram: a cross-correlation technique for mapping several visual fields at once. Biol. Cybern. 69, pp. 37–55. Cited by: 7.6.2.
  • [136] U. Eden, W. Truccolo, M. Fellows, J. Donoghue and E. Brown (2004) Reconstruction of hand movement trajectories from a dynamic ensemble of spiking motor cortical neurons. Vol. 2, pp. 4017–4020. Cited by: 11.3.3, 11.
  • [137] B.E. Edwards and G. H. Wakefield (1993) The spectral shaping of neural discharges by refractory effects. J. Acoust. Soc. Am. 93, pp. 3553–3564. Cited by: 7.5.3, 7.5.3.
  • [138] J. J. Eggermont, A. M. Aertsen and P. I. Johannesma (1983-05) Quantitative characterisation procedure for auditory neurons based on the spectro-temporal receptive field. Hearing Research 10 (2), pp. 167–90. Cited by: 10.5.
  • [139] G. B. Ermentrout and N. Kopell (1984) Frequency plateaus in a chain of weakly coupled oscillators. SIAM J. on Mathematical Analysis 15, pp. 215–237. Cited by: 20.2.3.
  • [140] G. B. Ermentrout and N. Kopell (1986) Parabolic bursting in an excitable system coupled with a slow oscillation. SIAM J. Applied Mathematics 46, pp. 233–253. Cited by: 5.3.1, 5.3, 5.4.
  • [141] G. B. Ermentrout (1996) Type i membranes, phase resetting curves, and synchrony. Neural Computation 8 (5), pp. 979–1001. Cited by: 4.5.1, 4.7, 5.3.1, 5.3, 5.3, 5.4, 6.5.
  • [142] T. Erneux and G. Nicolis (1993) Propagating waves in discrete bistable reaction-diffusion systems. Physica D: Nonlinear Phenomena 67 (1), pp. 237–244. Cited by: 3.3.2.
  • [143] U. Ernst, K. Pawelzik and T. Geisel (1995) Synchonization induced by temporal delays in pulse-coupled oscillators. Phys. Rev. Lett. 74, pp. 1570–1573. Cited by: 14.2.3.
  • [144] E. Erwin, K. Obermayer and K. Schulten (1995) Models of orientation and ocular dominance columns in the visual cortex: a critcal comparison. Neural Comput. 7, pp. 425–468. Cited by: 19.5.
  • [145] A. Faisal, L. Selen and D. Wolpert (2008) Noise in the nervous system. Nat. Rev. Neurosci. 9, pp. 202. Cited by: 7.7.
  • [146] O. Faugeras, J. Touboul and B. Cessac (2009) A constructive mean-field analysis of multi-population neural networks with random synaptic weights and stochastic inputs. Front. Comput. Neurosci. 3, pp. 1. Cited by: 12.3.1, 12.5.
  • [147] J. L. Feldman and J. D. Cowan (1975) Large-scale activity in neural nets i: theory with application to motoneuron pool responses. Biol. Cybern. 17, pp. 29–38. Cited by: 18.1.
  • [148] J.F. Feng (2001) Is the integrate-and-fire model good enough - a review.. Neural Networks 14, pp. 955–975. Cited by: 8.3.
  • [149] R. P. Feynman, A. R. Hibbs and D. F. Styer (2010) Quantum mechanics and path integrals: emended edition. Dover. Cited by: 14.5.1.
  • [150] R.S. Fisher, W. van Emde Boas, W. Blume, C. Elger, P. Genton, P. Lee and J.E. Engel (2005) Epileptic seizures and epilepsy: definitions proposed by the international league against epilepsy (ilae) and the international bureau for epilepsy (ibe). Epilepsia 46, pp. 470–472. Cited by: 20.2.
  • [151] H. M. Fishman, D. J. M. Poussart, L. E. Moore and E. Siebenga (1977) Conduction description from the low frequency impedance and admittance of squid axon. Journal of Membrane Biology 32, pp. 255–290. Cited by: 6.5.
  • [152] R. FitzHugh (1961) Impulses and physiological states in models of nerve membrane. Biophys. J. 1, pp. 445–466. Cited by: 3.3.1, 4.2.1.
  • [153] R. V. Florian (2007) Reinforcement learning through modulation of spike-timing-dependent synaptic plasticity. Neural Computation 19, pp. 1468–1502. Cited by: 19.4, 19.4, 19.5.
  • [154] N. Fourcaud and N. Brunel (2002) Dynamics of the firing probability of noisy integrate-and-fire neurons. Neural Computation 14, pp. 2057–2110. Cited by: 12.4.4, 13.1, 13.6.4, 13, 15.2.3.
  • [155] N. Fourcaud and N. Brunel (2005) Dynamics of the instantaneous firing rate in response to changes in input statistics. J. Comput. Neurosci. 18, pp. 311–321. Cited by: 15.4, 15.2.
  • [156] N. Fourcaud-Trocme, D. Hansel, C. van Vreeswijk and N. Brunel (2003) How spike generation mechanisms determine the neuronal response to fluctuating input. J. Neuroscience 23, pp. 11628–11640. Cited by: 13.5.1, 5.2.2, 5.2, 5.4.
  • [157] N. Fremaux, H. Sprekeler and W. Gerstner (2010) Functional requirements for reward-modulated spike-timing-dependent plasticity,. J. Neurosci. 40, pp. 13326–13337. Cited by: 19.4, 19.5.
  • [158] A.S. French and R.B. Stein (1970) A flexible neural analog using integrated circuits. IEEE transactions on bio-medical engineering 17 (3), pp. 248–253. Cited by: 6.5.
  • [159] R. C. Froemke, I.A. Tsay, M. Raad, J.D. Long and Y. Dan (2006) Contribution of individual spikes in burst-induced long-term synaptic modification. J. Neurophysiology 95, pp. 1620–1629. Cited by: 19.2.3.
  • [160] R. Froemke and Y. Dan (2002) Spike-timing dependent plasticity induced by natural spike trains. Nature 416, pp. 433–438. Cited by: 19.2.3.
  • [161] R. C. Froemke, M. M. Merzenich and C. E. Schreiner (2007) A synaptic memory trace for cortical receptive field plasticity. Nature 450, pp. 425–429. Cited by: 20.1.2.
  • [162] M.G.F. Fuortes and F. Mantegazzini (1962) Interpretation of the repetitive firing of nerve cells. J. General Physiology 45, pp. 1163–1179. Cited by: 2.2.3, 6.4.1, 6.5.
  • [163] S. Fusi and M. Mattia (1999) Collective behavior of networks with linear (vlsi) integrate and fire neurons. Neural Computation 11, pp. 633–652. Cited by: 12.2, 13.1, 13.
  • [164] J.M. Fuster and J.P. Jervey (1982) Neuronal firing in the inferotemporal cortex of the moneky in a visual memory task. J. Neurosci. 2, pp. 361–375. Cited by: 17.1.3.
  • [165] F. Gabbiani and C. Koch (1998) Principles of spike train analysis. in C. Koch and I. Segev (Eds.), Methods in Neuronal Modeling, pp. 312–360. Cited by: 7.7.
  • [166] F. Gabbiani, J. Midtgaard and T. Knopfel (1994) Synaptic integration in a model of cerebellar granule cells. J. Neurophys. 72 (2), pp. 999–1009. Cited by: 3.1.2, 3.1.2.
  • [167] L. Gammaitoni, P. Hänggi, P. Jung and F. Marchesoni (1998) Stochastic resonance. Rev Mod Phys 70, pp. 223–287. Cited by: 9.
  • [168] S. Ganguli, D. Huch and H. Sompolinsky (2008) Memory traces in dynamics systems. Proc. Natl. Acad. Sci. USA 105, pp. 18970–18975. Cited by: 20.4.
  • [169] T. J. Gawne, B. J. Richmond and L. M. Optican (1991) Interactive effects among several stimulus paramters on the response of striate cortical complex cells. J. Neurophys. 66 (2), pp. 379–389. Cited by: 10.5.
  • [170] C.D. Geisler and J.M. Goldberg (1966) A stochastic model of repetitive activity of neurons. Biophys. J. 6, pp. 53–69. Cited by: 1.6, 6.5, 6.5, 6.5.
  • [171] A. P. Georgopoulos, A. Schwartz and R. E. Kettner (1986) Neuronal population coding of movement direction. Science 233, pp. 1416–1419. Cited by: 11, 7.6.1.
  • [172] A.P. Georgopoulos, R.E. Kettner and A. Schwartz (1988) Primate motor cortex and free arm movements to visual targets in three-dimensional space. ii. coding of the direction of movement by a neuronal population. J. Neurosci. 8, pp. 2928–2937. Cited by: 19.4.
  • [173] F. Gerhard, R. Haslinger and G. Pipa (2011) Applying the multivariate time-rescaling theorem to neural population models. Neural Computation 23, pp. 1452–1483. Cited by: 10.3.3.
  • [174] G. L. Gerstein and D. H. Perkel (1972) Mutual temporal relations among neuronal spike trains.. Biophys. J. 12, pp. 453–473. Cited by: 10.5, 7.7.
  • [175] W. Gerstner and R. Brette (2009) Adaptive exponential integrate-and-fire model. Scholarpedia 4, pp. 8427. Cited by: 6.5.
  • [176] W. Gerstner, R. Kempter, J.L. van Hemmen and H. Wagner (1996) A neuronal learning rule for sub-millisecond temporal coding. Nature 383 (6595), pp. 76–78. Cited by: 19.2.2, 19.5.
  • [177] W. Gerstner and W. K. Kistler (2002) Spiking neuron modelsl single neurons, populations, plasticity. Cambridge University Press, Cambridge UK. Cited by: 9.2.
  • [178] W. Gerstner, R. Ritz and J. L. van Hemmen (1993) Why spikes? Hebbian learning and retrieval of time–resolved excitation patterns.. Biol. Cybern. 69, pp. 503–515. Cited by: 19.5.
  • [179] W. Gerstner, J. L. van Hemmen and J. D. Cowan (1996) What matters in neuronal locking. Neural Comput. 8, pp. 1653–1676. Cited by: 1.6, 20.2.1, 20.2.1, 20.4, 6.14, 6.5, 6.5.
  • [180] W. Gerstner and J. L. van Hemmen (1992) Associative memory in a network of ‘spiking’ neurons.. Network 3, pp. 139–164. Cited by: 12.2, 13.1, 14.4.2, 14, 17.4, 9.2, 9.
  • [181] W. Gerstner and J. L. van Hemmen (1993) Coherence and incoherence in a globally coupled ensemble of pulse emitting units. Phys. Rev. Lett. 71 (3), pp. 312–315. Cited by: 13.4.2, 14.2.3, 14.2.3, 14.
  • [182] W. Gerstner (1995) Time structure of the activity in neural network models. Phys. Rev. E 51 (1), pp. 738–758. Cited by: 14.1.2, 14.2.3, 14, 6.5, 7.5.4, 9.3, 9.
  • [183] W. Gerstner (2000) Population dynamics of spiking neurons: fast transients, asynchronous states and locking. Neural Computation 12, pp. 43–89. Cited by: 12.2, 13.1, 14.8, 14.9, 14.1.1, 14.1.2, 14.2.3, 14.2.3, 14.3.1, 14.3, 14, 14, 15.5, 15.2.1, 15.2.2, 15.4, 15.4, 7.5.4.
  • [184] W. Gerstner (2008) Spike-response model. Scholarpedia 3 (12), pp. 1343. Cited by: 6.5.
  • [185] W. Gerstner (1991) Associative memory in a network of ’biological’ neurons. San Mateo CA, pp. 84–90. Cited by: 17.4.
  • [186] G. Gigante, M. Mattia and P. Del Giudice (2007) Diverse population-bursting modes of adapting spiking neurons. Phys. Rev. Lett. 98, pp. 148101. Cited by: 13.6.1.
  • [187] M. Gilson, A.N. Burkitt, D.G. Grayden, D.A. Thomas and J. L. van Hemmen (2009) Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks iv: structuring synaptic pathways among recurrent connections. Biol. Cybern. 27, pp. 427–444. Cited by: 20.2.4.
  • [188] V. Giorno, A. G. Nobile and L. M.Ricciardi (1992) Instantaneous return processes and neuronal firings.. in R. Trappl (Ed.), Cybernetics and Systems Research, Vol 1., pp. 829–236. Cited by: 13.3.1.
  • [189] P.W. Glimcher, E. Fehr, C. Camerer and R.A. Poldrack (2008) Neuroeconomics. Academic Press. Cited by: 16.6, 16.
  • [190] B. Gluss (1967) A model of neuron firing with exponential decay of potential resulting in diffusion equations for the probability density. Bull. Math. Biophysics 29, pp. 233–243. Cited by: 8.4, 8.
  • [191] J.I. Gold and M.N. Shadlen (2007) The neural basis of decision making.. Annu. Rev. Neurosci. 30, pp. 535–547. Cited by: 16.1, 16.6, 16, 16.
  • [192] J.M. Goldberg, H.O. Adrian and F.D. Smith (1964) Response of neurons of the superior olivary complex of cat to acoustic stimuli of long duration. J. Neurophysiology 27, pp. 706–749. Cited by: 7.5.2, 7.5.2, 7.5.2.
  • [193] N. Golding, T. J. Mickus, Y. Katz, W. L. Kath and N. Spruston (2005) Factors mediating powerful voltage attenuation along ca1 pyramidal neuron dendrites. J. Physiology 568, pp. 69–82. Cited by: 3.4.
  • [194] T. Gollisch and M. Meister (2008) Rapid neural coding in the retina with relative spike latencies. Science 319, pp. 1108–1111. Cited by: 7.16.
  • [195] D. Golomb, D. Hansel, B. Shraiman and H. Sompolinsky (1992) Clustering in globally coupled phase oscillators. Phys. Rev. A 45, pp. 3516–3530. Cited by: 14.2.3.
  • [196] D. Golomb and J. Rinzel (1994) Clustering in globally coupled inhibitory neurons. Physica D 72, pp. 259–282. Cited by: 14.2.3.
  • [197] C. M. Gray and W. Singer (1989) Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex.. Proc. Natl. Acad. Sci. USA 86, pp. 1698–1702. Cited by: 7.6.2.
  • [198] S. Grossberg (1969) On learning, information, lateral inhibition, and transmitters. Mathem. Biosci. 4, pp. 255–310. Cited by: 16.6.
  • [199] S. Grossberg (1973) Contour enhancement, short term memory and constancies in reverberating neural networks. Studies in Applied Mathematics 52:217-257. Cited by: 12.5, 18.2.3, 18.2.4.
  • [200] S. Grossberg (1976) Adaptive pattern classification and universal recoding i: parallel development and coding of neuronal feature detectors. Biol. Cybern. 23, pp. 121–134. Cited by: 19.3.1, 19.5.
  • [201] B. S. Gutkin, G. B. Ermentrout and A. D. Reyes (2005) Phase-response curves give the responses of neurons to transient inputs. J. Neurophysiology 94, pp. 1623–1635. Cited by: 20.2.3, 20.4.
  • [202] R. Gütig, S. Aharonov, S. Rotter and H. Sompolinsky (2003) Learning input correlations through nonlinear temporally asymmetric Hebbian plasticity. Journal of Neuroscience 23 (9), pp. 3697–3714. Cited by: 19.2.1, 19.5.
  • [203] P. Haggard (2008) Human volition: towards a neuroscience of will. Nat. Rev. Neurosci. 9, pp. 934–946. Cited by: 16.11, 16.5, 16.5, 16.6.
  • [204] J. K. Hale and H. Koçac (1991) Dynamics and bifurcations. Text in Applied Mathematics, Springer, Berlin. Cited by: 4.3.2, 4.5.1, 4.7.
  • [205] O. P. Hamill, J. R. Huguenard and D. A. Prince (1991) Patch-clamp studies of voltage-gated currents in identified neurons of the rat cerebral cortex. Cerebral Cortex 1 (1), pp. 48–61. Cited by: 2.1.
  • [206] D. Hansel and G. Mato (2001) Existence and stability of persistent states in large neuronal networks. Phys. Rev. Letters 86, pp. 4175–4178. Cited by: 5.3.
  • [207] D. Hansel and H. Sompolinsky (1998) Modeling feature selectivity in local cortical circuits.. in C. Koch and I. Segev (Eds.), Methods in Neuronal Modeling, Cited by: 18.2.3.
  • [208] E. Hay, S. Hill, F. Schürmann, H. Markram and I. Segev (2011-07) Models of neocortical layer 5b pyramidal cells capturing a wide range of dendritic and perisomatic active properties. PLoS Comput Biol 7 (7), pp. e1002107. Cited by: 3.9, 3.4, 3.5.
  • [209] S. Haykin (1994) Neural networks. Prentice Hall, Upper Saddle River, NJ. Cited by: 16.3.4, 16.6, 19.2.
  • [210] D. O. Hebb (1949) The Organization of Behavior. Wiley, New York. Cited by: 12.1.3, 17.1.2, 17.1.2, 19.1, 19.1, 19.5.
  • [211] F. Helmchen, A. Konnerth and R. Yuste (2011) Imaging in neuroscience: a laboratory manual. Cold Spring Harbor Laboratory Press. Cited by: 2.3.3.
  • [212] G. Hennequin, T. Vogels and W. Gerstner (2013) Rich transient dynamics in inhibition-stabilized cortical networks. Preprint xx, pp. xx. Cited by: 20.3.
  • [213] G. Hennequin (2013) Amplification and stability in cortical circuits. Cited by: 20.2, 20.1.2.
  • [214] A. Herrmann and W. Gerstner (2001) Noise and the PSTH response to current transients: I. General theory and application to the integrate-and-fire neuron. J. Computational Neuroscience 11, pp. 135–151. Cited by: 15.3.3, 9.4.1, 9.
  • [215] J. Hertz, A. Krogh and R. G. Palmer (1991) Introduction to the Theory of Neural Computation. Addison-Wesley, Redwood City CA. Cited by: 16.3.4, 16.6, 17.2.4, 17.4, 19.2, 19.5.
  • [216] A. V. M. Herz, B. Sulzer, R. Kühn and J. L. van Hemmen (1988) The Hebb rule: representation of static and dynamic objects in neural nets.. Europhys. Lett. 7, pp. 663–669. Cited by: 19.5.
  • [217] A. V. M. Herz, B. Sulzer, R. Kühn and J. L. van Hemmen (1989) Hebbian learning reconsidered: Representation of static and dynamic objects in associative neural nets.. Biol. Cybern. 60, pp. 457–467. Cited by: 17.4.
  • [218] N. A. Hessler, A. M. Shirke and R. Malinow (1993) The probability of transmitter release at a mammalian central synapse. Nature 366, pp. 569–572. Cited by: 7.1.2.
  • [219] A.V. Hill (1936) Excitation and accomodation in nerve. Proc. R. Soc. B 119, pp. 305–355. Cited by: 1.6, 6.5, 6.5.
  • [220] B. Hille (1992) Ionic channels of excitable membranes. Sinauer, Sunderland. Cited by: 3.1.2, 3.1.2.
  • [221] B. Hille (2001) Ion channels of excitable membranes. 3rd ed edition, Sinauer. Cited by: 2.1.1, 2.4.
  • [222] A. L. Hodgkin and A. F. Huxley (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve.. J Physiol 117 (4), pp. 500–544. Cited by: 1.6, 2.4, 2.2, 2.
  • [223] A. L. Hodgkin (1948) The local electric changes associated with repetitive action in a non-medullated axon.. J. Physiol. (London) 107, pp. 165–181. Cited by: 2.2.3.
  • [224] K. Hoehn, T. W.J. Watson and B. A. MacVicar (1993) A novel tetrodotoxin-insensitive, slow sodium current in striatal and hippocampal beurons. Neuron 10 (3), pp. 543 – 552. Cited by: 2.19.
  • [225] G.M. Hoerzer, R. Legenstein and W. Maass (2012) Emergence of complex computational structures from chaotic neural networks through reward-modulated hebbian learning. Cerbral Cortex xx, pp. doi:10.1093/cercor/bhs348. Cited by: 20.1.1, 20.4.
  • [226] J. J. Hopfield (1982) Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA 79, pp. 2554–2558. Cited by: 16.6, 17.2.5, 17.2, 17.4.
  • [227] J. J. Hopfield (1984) Neurons with graded response have computational properties like those of two–state neurons.. Proc. Natl. Acad. Sci. USA 81, pp. 3088–3092. Cited by: 16.4.1, 16.6.
  • [228] F. C. Hoppensteadt and E. M. Izhikevich (1997) Weakly connected neural networks. Springer. Cited by: 5.4.
  • [229] R. A. Horn and C. R. Johnson (1985) Matrix analysis. Cambridge University Press, Cambridge, UK. Cited by: 19.3.2.
  • [230] D. H. Hubel and T. N. Wiesel (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex.. J. Physiol. (London) 160, pp. 106–154. Cited by: 12.2, 7.2.3.
  • [231] D. Hubel and T. Wiesel (1968) Receptive fields and functional architecture of monkey striate cortex. Journal of Physiology 195, pp. 215–243. Cited by: 1.1.4, 12.1.1, 12.1.1.
  • [232] D. H. Hubel (1988) Eye, brain, and vision. W. H. Freeman, New York. Cited by: 18.2.3.
  • [233] J. R. Huguenard, O. P. Hamill and D. A. Prince (1988) Developmental changes in na+ conductances in rat neocortical neurons: appearance of a slowly inactivating component. Journal of Neurophysiology 59 (3), pp. 778–795. Cited by: 2.1.
  • [234] J. D. Hunter and J. G. Milton (2003-07) Amplitude and frequency dependence of spike timing: implications for dynamic regulation. Journal of Neurophysiology 90 (1), pp. 387–94. Cited by: 10.5.
  • [235] Q. J. M. Huys, M. B. Ahrens and L. Paninski (2006) Efficient estimation of detailed single-neuron models.. J Neurophysiol 96 (2), pp. 872–890. Cited by: 11.3.2.
  • [236] L. Itti, C. Koch and E. Niebur (1998) A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Patt. Anal. Mach. Intell. 20, pp. 1254–1259. Cited by: 20.2.
  • [237] E. M. Izhikevich (2003) Simple model of spiking neurons.. IEEE Trans Neural Netw 14 (6), pp. 1569–1572. Cited by: 6.5, 6.5.
  • [238] E.M. Izhikevich (2007) Solving the distal reward problem through linkage of STDP and dopamine signaling. Cerebral Cortex 17, pp. 2443–2452. Cited by: 19.4, 19.4, 19.5, 6.3.3, 6.5.
  • [239] E. M. Izhikevich (2007) Dynamical systems in neuroscience : the geometry of excitability and bursting. MIT Press, Cambridge, Mass.. Cited by: 4.7, 4.7, 5.4.
  • [240] J.D. Jackson (1962) Classical electrodynamics. Wiley. Cited by: 3.2.2.
  • [241] H. Jaeger and H. Haas (2004) Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science 304, pp. 78–80. Cited by: 20.1.1, 20.1, 20.4.
  • [242] W. James (1890) Psychology (briefer course), ch. 16. Holt, New York. Cited by: 19.1, 19.5.
  • [243] P.I.M. Johannesma (1968) Diffusion models of the stochastic acticity of neurons. Berlin, pp. 116–144. Cited by: 13.6.3, 13, 8.4.3, 8.4, 8.
  • [244] R.S. Johansson and I. Birznieks (2004) First spikes in ensembles of human tactile afferents code complex spatial fingertip events. Nature Neuroscience 7, pp. 170–177. Cited by: 7.16.
  • [245] R. Jolivet, R. Kobayashi, A. Rauch, S. Shinomoto and W. Gerstner (2008) A benchmark test for a quantitative assessment of simple neuron models. J. Neuroscience Methods 169, pp. 417–424. Cited by: 11.
  • [246] R. Jolivet, T.J. Lewis and W. Gerstner (2004) Generalized integrate-and-fire models of neuronal activity approximate spike trains of a detailed model to a high degree of accuracy. J. Neurophysiol. 92, pp. 959–976. Cited by: 5.2.2.
  • [247] R. Jolivet, A. Rauch, H.-R. Lüscher and W. Gerstner (2006) Predicting spike timing of neocortical pyramidal neurons by simple threshold models. J. Comput. Neurosci. 21, pp. 35–49. Cited by: 11, 9.3, 9.1.1, 9.
  • [248] R. Jolivet, F. Schurmann, T.K. Berger, R. Naud, W. Gerstner and A. Roth (2008) The quantitative single-neuron modeling competition. Biol. Cybern. 99, pp. 417–426. Cited by: 11.1.2, 11.
  • [249] E. C. Kandel, J. H. Schwartz and T. Jessell (2000) Principles of neural science. 4th edition, Elsevier, New York. Cited by: 1.6, 12.2, 12.3.3, 18.1.
  • [250] M. Kaschube, M. Schnabel, S. Lowel, D.M. Coppola, L.E. White and F. Wolf (2010) Universality in the evolution of orientation columns in the visual cortex. Science 330, pp. 1113–1116. Cited by: 12.1.1.
  • [251] R. E. Kass and V. Ventura (2001) A spike-train probability model. Neural Computation 13, pp. 1713–1720. Cited by: 7.5.4, 9.3.
  • [252] R. Kass and A. Raftery (1995) Bayes factors. Journal of the American Statistical Association 90, pp. 773–795. Cited by: 11.3.2.
  • [253] J. Keat, P. Reinagel, R.C. Reid and M. Meister (2001) Predicting every spike: a model for the responses of visual neurons. Neuron 30, pp. 803–817. Cited by: 11.
  • [254] R. Kempter, W. Gerstner, J. L. van Hemmen and H. Wagner (1998) Extracting oscillations: Neuronal coincidence detection with noisy periodic spike input. Neural Comput. 10, pp. 1987–2017. Cited by: 9.4.2.
  • [255] R. Kempter, W. Gerstner, J. L. van Hemmen and H. Wagner (1999) The quality of coincidence detection and itd-tuning: a theoretical framework. in T. Dau, V. Hohmann and B. Kollmeier (Eds.), Psychophysics, Physiology and Models of Hearing, pp. 185–192. Cited by: 9.4.2.
  • [256] R. Kempter, W. Gerstner and J. L. van Hemmen (1999) Hebbian learning and spiking neurons. Phys. Rev. E 59, pp. 4498–4514. Cited by: 19.2.2, 19.3.2, 19.3.3, 19.3.3, 19.5, 20.2.4.
  • [257] R. Kempter, W. Gerstner and J. L. van Hemmen (2001) Intrinsic stabilization of output rates by spike-based hebbian learning. Neural Computation 13, pp. 2709–2741. Cited by: 19.3.2, 19.3.3, 19.3.3.
  • [258] T. B. Kepler, L. F. Abbott and E. Marder (1992) Reduction of conductance-based neuron models. Biol. Cybern. 66, pp. 381–387. Cited by: 4.2.2, 4.2, 4.7.
  • [259] W. M. Kistler and C. I. De Zeeuw (2002) Dynamical working memory and timed responses: the role of reverberating loops in the olivo-cerebellar system. Neural Comput., pp. 2597–2626. Cited by: 20.2.2.
  • [260] W. M. Kistler, W. Gerstner and J. L. van Hemmen (1997) Reduction of Hodgkin-Huxley equations to a single-variable threshold model. Neural Comput. 9, pp. 1015–1045. Cited by: 10.5, 6.5.
  • [261] W. M. Kistler and J. L. van Hemmen (2000) Modeling synaptic plasticity in conjunction with the timing of pre- and postsynaptic action potentials. Neural Computation 12, pp. 385. Cited by: 2.20, 20.2.
  • [262] W. M. Kistler and J. L. van Hemmen (2000) Modeling synaptic plasticity in conjunction with the timing of pre- and postsynaptic potentials. Neural Comput. 12, pp. 385–405. Cited by: 19.2.2.
  • [263] T. Klausberger and P. Somogyi (2008) Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science 321, pp. 53. Cited by: 3.1.1.
  • [264] B. W. Knight (1972) Dynamics of encoding in a population of neurons. J. Gen. Physiology 59, pp. 734–766. Cited by: 12.2, 12.5, 14, 15.2.1, 15.4.
  • [265] B. W. Knight (2000) Dynamics of encoding in neuron populations: some general mathematical features. Neural Computation 12, pp. 473–518. Cited by: 13.1, 13.
  • [266] R. Kobayashi and S. Shinomoto (2007) State space method for predicting the spike times of a neuron. Physical Review E 75 (1), pp. 011925. Cited by: 11.1.3.
  • [267] R. Kobayashi, Y. Tsubo and S. Shinomoto (2009) Made-to-order spiking neuron model equipped with a multi-timescale adaptive threshold. Frontiers in computational neuroscience 3. Cited by: 11.1.2.
  • [268] C. Koch, Ö. Bernander and R.J. Douglas (1995) Do neurons have a voltage or a current threshold for action potential initiation?. J. Comput. Neurosci. 2, pp. 63–82. Cited by: 4.1.1.
  • [269] C. Koch (1999) Biophysics of computation. Oxford University Press, New York, Oxford. Cited by: 2.4.
  • [270] T. Kohonen (1972) Correlation matrix memories. IEEE trans. comp. C-21, pp. 353–359. Cited by: 17.4, 17.4.
  • [271] T. Kohonen (1984) Self-Organization and Associative Memory. Springer-Verlag, Berlin Heidelberg New York. Cited by: 16.3.4, 16.6, 18.2.4, 19.3.1, 19.5.
  • [272] M. H. P. Kole, S. Hallermann and G. J. Stuart (2006) Single ih channels in pyramidal neuron dendrites: properties, distribution, and impact on action potential output.. J Neurosci 26 (6), pp. 1677–1687. Cited by: 3.4.
  • [273] P. Konig, A. K. Engel and W. Singer (1996) Integrator or coincidence detector? the role of the cortical neuron revisited.. Trends Neurosci 19 (4), pp. 130–137. Cited by: 8.
  • [274] M. Konishi (1993-04) Listening with two ears. Scientific American 268, pp. 34–41. Cited by: 9.4.2.
  • [275] N. Kopell (1986) Symmetry and phase locking in chains of weakly coupled oscillators. Communications on pure and applied mathematics 39, pp. 623–660. Cited by: 20.2.3.
  • [276] A. Korngreen and B. Sakmann (2000) Voltage-gated k+ channels in layer 5 neocortical pyramidal neurones from young rats: subtypes and gradients. The Journal of Physiology 525 (3), pp. 621–639. Cited by: 2.14, 3.4.
  • [277] S. Koyama, L. Castellanos Pérez-Bolde, C. R. Shalizi and R. E. Kass (2010) Approximate methods for state-space models. Journal of the American Statistical Association 105 (489), pp. 170–180. Cited by: 11.
  • [278] R. Kree and A. Zippelius (1991) Asymmetrically diluted neural networks. in E. Domany, J.L. van Hemmen and K. Schulten (Eds.), Models of Neural Networks, Cited by: 12.4.5, 12.4.5.
  • [279] T. Kreuz, J. Haas, A. Morelli, H. Abarbanel and A. Politi (2007) Measuring spike train synchrony. Journal of Neuroscience Methods 165 (1), pp. 151–161. Cited by: 10.5.
  • [280] T. Kreuz, D. Chicharro, R. G. Andrzejak, J. S. Haas and H. D. I. Abarbanel (2009-10) Measuring multiple spike train synchrony. J Neurosci Methods 183 (2), pp. 287–99. Cited by: 10.5.
  • [281] J. E. Kulkarni and L. Paninski (2007) Common-input models for multiple neural spike-train data. Network: Computation in Neural Systems 18 (4), pp. 375–407. Cited by: 11.
  • [282] Y. Kuramoto (1984) Chemical oscillations, waves, and turbulence.. Springer, Berlin Heidelberg New York. Cited by: 20.2.3, 20.2.3, 20.4.
  • [283] P. König, A. K. Engel and W. Singer (1996) Integrator or coincidence detector? The role of the cortical neuron revisited. TINS 19 (4), pp. 130–137. Cited by: 8.3, 8.3.
  • [284] C. R. Laing and C. C. Chow (2001) Stationary bumps in a network of spiking neurons. Neural Computation 13, pp. 1473–1494. Cited by: 18.2.3.
  • [285] P. Lansky and V. Lanska (1987) Diffusion approximation of the neuronal model with synaptic reversal potentials. Biol. Cybern. 56, pp. 19–26. Cited by: 13.6.3.
  • [286] P. Lansky (1984) On approximations of Stein’s neuronal model. J. Theoretical Biol. 107, pp. 631–647. Cited by: 8.4.
  • [287] P. Lansky (1997) Sources of periodical force in noisy integrate-and-fire models of neuronal dynamics. Phys. Rev. E 55, pp. 2040–2043. Cited by: 8.4.
  • [288] L. Lapicque (1907) Recherches quantitatives sur l’excitation electrique des nerfs traitée comme une polarization. J. Physiol. Pathol. Gen. 9, pp. 620–635. Cited by: 1.6, 6.5.
  • [289] M.E. Larkum and T. Nevian (2008) Synaptic clustering by dendritic signalling mechanisms. Curr. Opinion Neurobiol. 18, pp. 321–331. Cited by: 1.4.4.
  • [290] M.E. Larkum, J.J. Zhu and B. Sakmann (2001) Dendritic mechanisms underlying the coupling of the dendritic with the axonal action potential initiation zone of adult rat layer 5 pyramidal neurons. J. Physiology (London) 533, pp. 447–466. Cited by: 11.1.3.
  • [291] P. E. Latham, B.J. Richmond, P. Nelson and S. Nirenberg (2000) Intrinsic dynamics in neuronal networks. I. Theory. J. Neurophysiology 83, pp. 808–827. Cited by: 5.3, 5.4.
  • [292] G. Laurent (1996) Dynamical representation of odors by oscillating and evolving neural assemblies. Trends Neurosci. 19, pp. 489–496. Cited by: 20.2, 20.4.
  • [293] S. Lefort, C. Tomm, J.C.F. Sarria and C.C.H. Petersen (2009) The excitatory neuronal network of the c2 barrel column in mouse primary somatosensory cortex. neuron 61: 301-316.. Neuron 61, pp. 301–316. Cited by: 12.5, 12.1.2, 12.3, 12.3.
  • [294] R. Legenstein, D. Pecevski and W. Maass (2008) A learning theory for reward-modulated spike-timing-dependent plasticity with application to biofeedback. PLOS Comput. Biol. 4, pp. e1000180. Cited by: 19.4, 19.5.
  • [295] W. B. Levy and D. Stewart (1983) Temporal contiguity requirements for long-term associative potentiation/depression in hippocampus. Neurosci, 8, pp. 791–797. Cited by: 19.5.
  • [296] J. Lewi, R. Butera and L. Paninski (2009) Sequential optimal design of neurophysiology experiments. Neural Computation 21, pp. 619–687. Cited by: 10.4, 10.4.
  • [297] B. Libet (1985) Unconscious cerebral initiative and the role of conscious will in voluntary action. Behavioral and Brain Sciences 8, pp. 529–566. Cited by: 16.11, 16.5.1, 16.5.2, 16.6.
  • [298] B. Lindner and L. Schimansky-Geier (2001) Transmission of noise coded versus additive signals through a neuronal ensemble. Physical Review Letters 86, pp. 2934–2937. Cited by: 13.5.2, 15.2.3, 15.2.3, 15.4, 15.2.
  • [299] B. Lindner, B. Doiron and A. Longtin (2005) Theory of oscillatory firing induced by spatially correlated noise and delayed inhibitory feedback. Physical Review E 72 (6), pp. 061919. Cited by: 14.6.
  • [300] R. Linsker (1986) From basic network principles to neural architecture: emergence of spatial-opponent cells. Proc. Natl. Acad. Sci. USA 83, pp. 7508–7512. Cited by: 19.5.
  • [301] P. Linz (1985) Analytical and numerical methods for volterra equations. Vol. 7, SIAM. Cited by: 14.1.5.
  • [302] J. Lisman, H. Schulman and H. Cline (2002) The molecular basis of camkii function in synaptic and behavioural memory. Nat Rev Neurosci 3, pp. 175–190. Cited by: 19.5.
  • [303] J. Lisman (2003) Long-term potentiation: outstanding questions and attempted synthesis. Phil. Trans. R. Soc. Lond B: Biological Sciences 358, pp. 829 – 842. Cited by: 19.5.
  • [304] W. A. Little (1974) The existence of persistent states in the brain. Math. Biosc. 19, pp. 101–120. Cited by: 17.2, 17.4, 17.4.
  • [305] Y. Liu and X. Wang (2001) Spike-frequency adaptation of a generalized leaky integrate-and-fire model neuron. Journal of Computational Neuroscience 10, pp. 25–45. Cited by: 6.5.
  • [306] Y. Loewenstein and H.S. Seung (2006) Operant matching is a generic outcome of synaptic plasticity based on the covariance between reward and neural activity. Proc. Natl. Acad. Sci. USA 103, pp. 15224–15229. Cited by: 19.5.
  • [307] Y. Loewenstein (2008) Robustness of learning that is based on covariance-driven synaptic plasticity. PLOS Comput. Biol. 4, pp. e1000007. Cited by: 19.4, 19.5.
  • [308] A. Longtin (1993) Stochastic resonance in neuron models. J. Stat. Phys. 70, pp. 309–327. Cited by: 9.
  • [309] E.V. Lubenov and A. G. Siapas (2008) Decoupling through synchrony in neuronal circuits with propagation delays. Neuron 58, pp. 118–131. Cited by: 20.2.4, 20.2.4.
  • [310] J.S. Lund, A. Angelucci and P.C. Bressloff (2003) Anatomical substrates for functional columns in macaque monkey primary visual cortex. Cerebral Cortex 12, pp. 15–24. Cited by: 12.1.1.
  • [311] B.N. Lundstrom, M.H. Higgs, W.J. Spain and A.L. Fairhall (2008) Fractional differentiation by neocortical pyramidal neurons. Nature Neuroscience 11, pp. 1335–1342. Cited by: 11.1.2.
  • [312] W. Maass, P. Joshi and E.D. Sontag (2007) Computational aspects of feedback in neural circuits. PLOS Comput. Biol. 3, pp. e165. Cited by: 20.1, 20.1.1, 20.1.1, 20.4.
  • [313] W. Maass, T. Natschläger and H. Markram (2002) Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Computation 14, pp. 2531–2560. Cited by: 20.1, 20.4.
  • [314] E. Mach (1865) Über die wirkung der räumlichen vertheilung des lichtreizes auf die netzhaut. Sitzungsberichte der mathematisch-naturwissenschaftlichen Classe der kaiserlichen Akademie der Wissenschaften 52, pp. 303–322. Cited by: 18.2.3.
  • [315] E. Mach (1906) Die analyse der empfindungen (chapter x). 5th edition, Gustav Fischer, Jena. Cited by: 18.2.3.
  • [316] C. Machens (2002) Adaptive sampling by information maximization. Physical Review Letters 88, pp. 228104–228107. Cited by: 10.4.
  • [317] C.K. Machens, R. Romo and C.D. Brody (2005) Flexible control of mutual inhibition: a neuron model of two-interval discrimination. Science 307, pp. 1121–1124. Cited by: 16.6.
  • [318] D. J. C. MacKay and K. D. Miller (1990) Analysis of linsker’s application of hebbian rules to linear networks. Network 1, pp. 257–297. Cited by: 19.5.
  • [319] D. Mackay (1992) Information-based objective functions for active data selection. Neural Computation 4, pp. 589–603. Cited by: 10.4.
  • [320] C. M. MacLeod (1991) Half a century of research on the stroop effect: an integrative review.. Psych. Bulletin 109, pp. 163–203. Cited by: 17.1.
  • [321] J. M. MacPherson and J. W. Aldridge (1979-10) A quantitative method of computer analysis of spike train data collected from behaving animals. Brain Research 175 (1), pp. 183–7. Cited by: 10.5.
  • [322] J. C. Magee (1998) Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal ca1 pyramidal neurons. The Journal of Neuroscience 18 (19), pp. 7613–7624. Cited by: 2.18.
  • [323] Z. F. Mainen, J. Joerges, J. R. Huguenard and T. J. Sejnowski (1995) A model of spike initiation in neocortical pyramidal neurons.. Neuron 15 (6), pp. 1427–1439. Cited by: 2.1.
  • [324] Z. F. Mainen and T. J. Sejnowski (1995) Reliability of spike timing in neocortical neurons. Science 268, pp. 1503–1506. Cited by: 7.3, 7.1.1.
  • [325] Z. F. Mainen and T. J. Sejnowski (1996) Influence of dendritic structure on firing pattern in model neocortical neurons. Nature 382, pp. 363–366. Cited by: 3.4.
  • [326] H. Makram, J. Sjostrom and W. Gerstner (2011) A history of spike-timing dependent plasticity. Front. Syn. Neurosci. 3, pp. 4. Cited by: 19.5.
  • [327] A. Manwani and C. Koch (1999) Detecting and estimating signals in noisy cable structures, I: neuronal noise sources. Neural Computation 11, pp. 1797–1829. Cited by: 7.1.1.
  • [328] H. Markram, J. Lübke, M. Frotscher and B. Sakmann (1997) Regulation of synaptic efficacy by coincidence of postysnaptic AP and EPSP. Science 275, pp. 213–215. Cited by: 19.4, 19.1.2, 19.1.2, 19.5, 20.2.4.
  • [329] H. Markram, M. Toledo-Rodrgiguez, Y. Wang, A. Gupta, G. Silberberg and C. Wu (2004) Interneurons of the neocortical inhibitory system. Nature Review Neuroscienc 5, pp. 793–807. Cited by: 1.10, 3.1.1, 6.1, 6.2.1.
  • [330] H. Markram and M. Tsodyks (1996) Redistribution of synaptic efficacy between neocortical pyramidal neurons. Nature 382, pp. 807–810. Cited by: 7.1.2.
  • [331] P. Marsalek, C. Koch and J. Maunsell (1997) On the relationship between synaptic input and spike output jitter in individual neurons. Proc. Natl. Acad. Sci. USA 94, pp. 735–740. Cited by: 15.3, 15.1.
  • [332] M. Mascaro and D. J. Amit (1999) Effective neural response function for collective population states. Network 10, pp. 351–373. Cited by: 12.4.4.
  • [333] A. Mauro, F. Conti, F. Dodge and R. Schor (1970) Subthreshold behavior and phenomenological impedance of the squid giant axon.. J Gen Physiol 55 (4), pp. 497–523. Cited by: 6.5.
  • [334] D. A. McCormick, Z. Wang and J. Huguenard (1993) Neurotransmitter control of neocortical neuronal activity and excitability.. Cereb Cortex 3 (5), pp. 387–398. Cited by: 3.1.1, 3.1.2.
  • [335] W. S. McCulloch and W. Pitts (1943) A logical calculus of ideas immanent in nervous activity. Bulletin of mathematical Biophys. 5, pp. 115–133. Cited by: 1.6, 17.2.
  • [336] B. McNamara and K. Wiesenfeld (1989) Theory of stochastic resonance. Physical Review A 39, pp. 4854–4869. Cited by: 9.
  • [337] B. W. Mel (1994) Information processing in dendritic trees. Neural Comput. 6, pp. 1031–1085. Cited by: 3.5.
  • [338] S. Mensi, R. Naud, M. Avermann, C. C. H. Petersen and W. Gerstner (2012) Parameter extraction and classification of three neuron types reveals two different adaptation mechanisms. J. Neurophys. 107, pp. 1756–1775. Cited by: 10.5, 11.1, 11.2, 11.3, 11.1.1, 11.1.2, 6.4.1, 6.4.1.
  • [339] S. Mensi, R. Naud and W. Gerstner (2011) From stochastic nonlinear integrate-and-fire to generalized linear models. pp. 0794. Cited by: 9.9, 9.4, 9.
  • [340] S. Mensi, C. Pozzorini, O. Hagens and W. Gerstner (2013) Evidence for a nonlinear coupling between firing threshold and subthreshold membrane potential. Cosyne abstracts, Salt Lake City USA. Cited by: 4.1.
  • [341] C. Meyer and C. van Vreeswijk (2002) Temporal correlations in stochastic networks of spiking neurons. Neural Computation 14, pp. 369–404. Cited by: 14.6.
  • [342] E.K. Miller and J.D. Cohen (2001) AN integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24, pp. 167–202. Cited by: 17.1.3.
  • [343] K. D. Miller and D. J. C. MacKay (1994) The role of constraints in Hebbian learning. Neural Computation 6, pp. 100–126. Cited by: 19.5.
  • [344] K. D. Miller (1994) A model for the development of simple cell receptive fields and the ordered arrangement of orientation columns through activity dependent competition between ON- and OFF-center inputs. J. Neurosci. 14, pp. 409–441. Cited by: 19.5.
  • [345] K.D. Miller and F. Fumarola (2012) Mathematical equivalence of two common forms of firing rate models of neural networks. Neural Comput. 24, pp. 25–31. Cited by: 5., 15.3.1.
  • [346] K.D. Miller, J. B. Keller and M. P. Stryker (1989) Ocular dominance column development: analysis and simulation. Science 245, pp. 605–615. Cited by: 19.5.
  • [347] M. I. Miller and K.E. Mark (1992) A statistical study of cochlear nerve discharge patterns in reponse to complex speech stimuli. J. Acoust. Soc. Am. 92, pp. 202–209. Cited by: 9.1.1, 9.4.2.
  • [348] R. E. Mirollo and S. H. Strogatz (1990) Synchronization of pulse coupled biological oscillators. SIAM J. Appl. Math. 50, pp. 1645–1662. Cited by: 20.2.1, 20.4.
  • [349] Y. Miyashita (1988) Neuronal correlate of visual associative long-term memory in the primate temporal cortex.. Nature 335, pp. 817–820. Cited by: 17.4, 17.1.3.
  • [350] G. Mongillo, O. Barak and M. Tsodyks (2008) Synaptic theory of working memory. Science 319, pp. 1543–1546. Cited by: 17.3.2, 17.4.
  • [351] R. Moreno-Bote and N. Parga (2004) Role of synaptic filtering on the firing response of simple model neurons. Physical Review Letters 92, pp. 28102. Cited by: 15.2.1, 15.4.
  • [352] C. Morris and H. Lecar (1981) Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 35, pp. 193–213. Cited by: 4.2.1.
  • [353] A. Morrison, M. Diesmann and W. Gerstner (2008) Phenomenological models of synaptic plasticity based on spike timing. Biol. Cybern. 98, pp. 459–478. Cited by: 19.6, 19.7, 19.5.
  • [354] V. B. Mountcastle (1957) Modality and topographic properties of single neurons of cat’s somatosensory cortex. J. Neurophysiol. 20, pp. 408–434. Cited by: 12.2.
  • [355] J. D. Murray (1993) Mathematical biology. 2nd edition, Biomathematics Texts, Springer–Verlag. Cited by: 4.7.
  • [356] J. Nagumo, S. Arimoto and S. Yoshizawa (1962) An active pulse transmission line simulating nerve axon. Proc. IRE 50, pp. 2061–2070. Cited by: 3.3.1, 4.2.1.
  • [357] R. Naud, F. Gerhard, S. Mensi and W. Gerstner (2011) Improved similarity measures for small sets of spike trains. Neural Computation 23, pp. 3016–3069. Cited by: 10.3.5, 10.5.
  • [358] R. Naud and W. Gerstner (2012) Coding and decoding in adapting neurons: a population approach to the peri-stimulus time histogram. PLoS Computational Biology 8, pp. e1002711. Cited by: 14.12, 14.4, 14.5.1, 14.5.1, 14, 15.3.4.
  • [359] R. Naud and W. Gerstner (2012) The performance (and limits) of simple neuron models: generalizations of the leaky integrate-and-fire model. in N. L. Novére (Ed.), Computational Systems Neurobiology, Cited by: 7.2.
  • [360] R. Naud, N. Marcille, C. Clopath and W. Gerstner (2008) Firing patterns in the adaptive exponential integrate-and-fire model. Biological Cybernetics 99, pp. 335–347. Cited by: 6.2.2, 6.5.
  • [361] J. Nelder and R. Wederburn (1972) Generalized linear models. J. Roy. Statistical Soc. A 135, pp. 370–384. Cited by: 9.
  • [362] I. Nelken, Y. Prut, E. Vaadia and M. Abeles (1994) In search of the best stimulus: an optimization procedure for finding efficient stimuli in the cat auditory cortex. Hearing Res. 72, pp. 237–253. Cited by: 10.4.
  • [363] M. Nelson and J. Rinzel (1995) The Hodgkin-Huxley model. in J. M. Bower and D. Beeman (Eds.), The book of Genesis, pp. 27–51. Cited by: 2.4.
  • [364] W.T. Newsome, K.H. Britten and J.A. Movshon (1989) Neuronal correlates of a perceptual decision. Nature 341, pp. 52–54. Cited by: 7.4.
  • [365] A. Ngezahayo, M. Schachner and A. Artola (2000) Synaptic activation modulates the induction of bidirectional synaptic changes in adult mouse hippocamus. J. Neuroscience 20, pp. 2451–2458. Cited by: 19.3, 19.1.1.
  • [366] A. Nini, A. Feingold, H. Slovin and H. Bergman (1995) Neurons in the globus pallidus do not show correlated activity in the normal monkey, but phase-locked oscillations appear in the mptp model of parkinsonism. J. Neurophysiol. 74, pp. 1800–1805. Cited by: 20.2, 20.3.
  • [367] D. Nykamp and D. Tranchina (2000) A population density approach that facilitates large-scale modeling of neural networks: analysis and application to orientation tuning. J. Computational Neuroscience 8, pp. 19–50. Cited by: 12.2, 13.3, 13.4, 13.1, 13.2.3, 13.2.3, 13.
  • [368] K. Nützel (1991) The lenght of attractors in asymmetric random neural networks with deterministic dynamics. J. Phys. A.: Math. Gen. 24, pp. L151–L157. Cited by: 12.4.5.
  • [369] E. Oja (1982) A simplified neuron model as a principal component analyzer. J. Mathematical Biology 15, pp. 267–273. Cited by: 19.2.1, 19.5.
  • [370] M. Okun and I. Lampl (2008) Instantaneous correlation of excitation and inhibition during ongoing and sensory-evoked activities. Nat. Neurosci. 11, pp. 535–537. Cited by: 20.1.2.
  • [371] A. Omurtag, B.W. Knight and L. Sirovich (2000) On the simulation of a large population of neurons. J. Computational Neuroscience 8, pp. 51–63. Cited by: 12.2, 13.1, 13.2.3, 13.
  • [372] L. M. Optican and B. J. Richmond (1987) Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex. 3. Information theoretic analysis.. J. Neurophysiol. 57, pp. 162–178. Cited by: 11, 7.6.2.
  • [373] S. Ostojic and N. Brunel (2011) From spiking neuron models to linear-nonlinear models. PLOS Comput. Biol. 7, pp. e1001056. Cited by: 15.10, 15.3.3, 15.3.3, 15.4.
  • [374] H. Ozeki, I.M. Finn, E.S. Schaffer, K.D. Miller and D. Ferstner (2009) Inhibitory stabilization of the cortical network underlies visual surround suppression. Neuron 62, pp. 587–592. Cited by: 18.12, 18.13, 18.2.4, 18.2.4, 18.2.4, 20.1.2.
  • [375] J. O’Keefe and M. Recce (1993) Phase relationship between hippocampal place units and the hippocampal theta rhythm. Hippocampus 3, pp. 317–330. Cited by: 20.2, 20.4, 7.6.2.
  • [376] A. R. C. Paiva, I. Park and J. Príncipe (2009) A comparison of binless spike train measures. Neural Computing & Applications 19 (3), pp. 1–15. Cited by: 10.5.
  • [377] A. R. C. Paiva, I. Park and J. Príncipe (2009) A reproducing kernel hilbert space framework for spike train signal processing. Neural computation 21 (2), pp. 424–449. Cited by: 10.5.
  • [378] A. R. C. Paiva, I. Park and J. Príncipe (2010) Inner products for representation and learning in the spike train domain. in K. G. Oweiss (Ed.), Statistical Signal Processing for Neuroscience and Neurotechnology, Cited by: 10.5.
  • [379] L. Paninski, M. Fellows, S. Shoham, N. Hatsopoulos and J. Donoghue (2004) Superlinear population encoding of dynamic hand trajectory in primary motor cortex. J. Neurosci. 24, pp. 8551–8561. Cited by: 10.2.1.
  • [380] L. Paninski, J. Pillow and J. Lewi (2007) Statistical models for neural encoding, decoding, and optimal stimulus design.. in P. Cisek, T. Drew and J. Kalaska (Eds.), Computational Neuroscience: Theoretical Insights into Brain Function, Progress in Brain Research, Vol. 165. Cited by: 11.7, 11.
  • [381] L. Paninski, J. Pillow and E. Simoncelli (2005) Comparing integrate-and-fire-like models estimated using intracellular and extracellular data.. Neurocomputing 65, pp. 379–385. Cited by: 10.2.3.
  • [382] L. Paninski (2003) Convergence properties of three spike-triggered analysis techniques. Network 14, pp. 437–464. Cited by: 10.2.2.
  • [383] L. Paninski (2004) Maximum likelihood estimation of cascade point-process neural encoding models. Network: Computation in Neural Systems 15, pp. 243–262. Cited by: 10.3, 10.1.2, 10.1, 10.2.1, 10.2.2, 10, 11.2.1, 11.3.1.
  • [384] L. Paninski (2005) Asymptotic theory of information-theoretic experimental design. Neural Computation 17, pp. 1480–1507. Cited by: 10.4.
  • [385] L. Paninski, Y. Ahmadian, D. G. Ferreira, S. Koyama, K. R. Rad, M. Vidne, J. Vogelstein and W. Wu (2010) A new look at state-space models for neural data. Journal of Computational Neuroscience 29 (1-2), pp. 107–126. Cited by: 11.
  • [386] A. Papoulis (1991) Probability, random variables, and stochastic processes. McGraw-Hill, New York. Cited by: 7.5.
  • [387] D. Pare, R. Curro’Dossi and M. Steriade (1990) Neuronal basis of the parkinsonian resting tremor: a hypothesis and its implications for treatment. Neuroscience 35, pp. 217–226. Cited by: 20.2, 20.3.
  • [388] I. Park, S. Seth, M. Rao and J. Principe (2012) Strictly positive-definite spike train kernels for point-process divergences. Neural Computation 24. Cited by: 10.5.
  • [389] Patlak,JB and Ortiz,M (1985) Slow currents through single sodium channels of the adult rat heart.. The Journal of general physiology 86 (1), pp. 89–104. Cited by: 2.5.
  • [390] V. Pawlak and J. Kerr (2008) Dopamine receptor activation is required for corticostriatal spike-timing-dependent plasticity. J. Neuroscience 28, pp. 2435–2446. Cited by: 19.16.
  • [391] V. Pawlak, J.R. Wickens, A. Kirkwood and J.N.D. Kerr (2010) Timing is not everything: neuromodulation opens the STDP gate. Front. Synaptic Neurosci. 2, pp. 146. Cited by: 19.4, 19.5.
  • [392] D. H. Perkel, G. L. Gerstein and G. P. Moore (1967) Neuronal spike trains and stochastic point processes I. the single spike train. Biophys. J. 7, pp. 391–418. Cited by: 10.5, 7.5.2, 7.7.
  • [393] D. H. Perkel, G. L. Gerstein and G. P. Moore (1967) Neuronal spike trains and stochastic point processes II. simultaneous spike trains.. Biophys. J. 7, pp. 419–440. Cited by: 10.5, 7.5.2.
  • [394] J.-P. Pfister and W. Gerstner (2006) Triplets of spikes in a model of spike timing-dependent plasticity. J. Neuroscience 26, pp. 9673–9682. Cited by: 19.2.3, 19.2.3, 19.2.3, 19.5.
  • [395] J.-P. Pfister and P.A. Tass (2010) STDP in oscillatory recurrent networks: theoretical conditions for desynchronization and applications to deep brain stimulation. Front. Comput. Neurosci. 4, pp. 22. Cited by: 20.10, 20.11, 20.2.4, 20.2.4, 20.2.4, 20.3, 20.4.
  • [396] J.-P. Pfister, T. Toyoizumi, D. Barber and W. Gerstner (2006) Optimal spike-timing dependent plasticity for precise action potential firing in supervised learning. Neural Computation 18, pp. 1318–1348. Cited by: 19.8, 19.4.
  • [397] A. Pikovsky and M. Rosenblum (2007) Synchronization. Scholarpedia 2, pp. 1459. Cited by: 20.2.3, 20.2.3, 20.4.
  • [398] J.W. Pillow, L. Paninski, V.J. Uzzell, E.P. Simoncelli and E.J.Chichilnisky (2005) Prediction and decoding of retinal ganglion cell responses with a probabilistic spiking model. J. Neuroscience 25, pp. 11003–11023. Cited by: 11.2.1, 11.3.
  • [399] J.W. Pillow, J. Shlens, L. Paninski, A. Sher, A. M. Litke, E. J. Chichilnisky and E.P. Simoncelli (2008) Spatio-temporal correlations and visual signalling in a complete neuronal population. Nature 454, pp. 995–999. Cited by: 1.6, 10.2.1, 10.5, 11.11, 11.8, 11.2.2, 11.2.2, 11.2.2, 11.2.2, 11.3.3, 11, 9.2, 9.
  • [400] J. W. Pillow, Y. Ahmadian and L. Paninski (2011) Model-based decoding, information estimation, and change-point detection techniques for multineuron spike trains. Neural Computation 23 (1), pp. 1–45. Cited by: 11.11, 11.3.2, 11.3.
  • [401] J. Platkiewicz and R. Brette (2010) A threshold equation for action potential initiation. PLOS Comput. Biol. 6, pp. e1000850. Cited by: 11.1.2, 5.4.
  • [402] M.L. Platt and S.A. Huettel (2008) Risky business: the neuroeconomics of decision making under uncertainty. Nat. Neurosci. 11, pp. 398–403. Cited by: 16.6, 16.
  • [403] H. E. Plesser and W. Gerstner (2000) Noise in integrate-and-fire models: from stochastic input to escape rates.. Neural Computation 12, pp. 367–384. Cited by: 8.10, 9.11, 9.12, 9.4.1, 9.4.1, 9.
  • [404] H. E. Plesser and S. Tanaka (1997) Stochastic resonance in a model neuron with reset. Phys. Lett. A 225, pp. 228–234. Cited by: 8.4.2.
  • [405] H. E. Plesser (2000) The ModUhl software collection. Technical report MPI für Strömungsforschung, Göttingen. Cited by: 8.4.2.
  • [406] H.E. Plesser (1999) Aspects of signal processing in noisy neurons. Ph.D. Thesis, Georg-August-Universität, Göttingen. Cited by: 8.4, 9.4.2.
  • [407] C. Pozzorini, R. Naud, S. Mensi and W. Gerstner (2013) Temporal whitening by power-law adaptation in neocortical neurons. Nature Neuroscience 16, pp. 942–948. Cited by: 11.4, 11.1.2, 11.1.2, 11.1.3, 11.1.3.
  • [408] W. Prinz (2004) Der mensch ist nicht frei. ein gespäch. in C. Geyer (Ed.), Hirnforschung und Willensfreiheit, Cited by: 16.5.2.
  • [409] D. Purves, G.A. Augustine, D. Fitzpatrick, W. Hall, A.-S. LaMantia and J.O. M. nd L. White (2008) Neuroscience, 4th edition. Sinauer Associates, Sunderland, MA. Cited by: 1.6, 2.1.2.
  • [410] R. Q. Quiroga, T. Kreuz and P. Grassberger (2002-10) Event synchronization: a simple and fast method to measure synchronicity and time delay patterns. Phys. Rev. E 66 (4), pp. 041904. Cited by: 10.5.
  • [411] R. Q. Quiroga, L. Reddy, G. Kreiman, C. Koch and I. Fried (2005) Invariant visual representation by single neurons in the human brain. Nature 435, pp. 1102–1107. Cited by: 17.3, 17.1.2, 17.1.2.
  • [412] G. Rainer and E.K. Miller (2002) Timecourse of object-related neural activity in the primate prefrontal cortex during a short-term memory task. Europ. J. Neurosci. 15, pp. 1244–1254. Cited by: 17.4, 17.1.3.
  • [413] K. Rajan and L.F. Abbott (2006) Eigenvalue spectra of random matrices for neural networks. Phys. Rev. Lett. 97, pp. 188104. Cited by: 20.2, 20.1.2, 20.1.2, 20.4.
  • [414] W. Rall (1989) Cable theory for dendritic neurons. Cambridge, pp. 9–62. Cited by: 3.2.1.
  • [415] A. D. Ramirez, Y. Ahmadian, J. Schumacher, D. Schneider, S. M. N. Woolley and L. Paninski (2011) Incorporating naturalistic correlation structure improves spectrogram reconstruction from neuronal activity in the songbird auditory midbrain. J. Neuroscience 31 (10), pp. 3828–3842. Cited by: 11.3.1.
  • [416] S. Ramòn y Cajal (1909) Histologie du système nerveux de l’homme et des vertébré. A. Maloine, Paris. Cited by: 1.1, 1.1.
  • [417] A. D. Randall and R. W. Tsien (1997-07) Contrasting biophysical and pharmacological properties of t-type and r-type calcium channels. Neuropharmacology 36 (7), pp. 879–93. Cited by: 3.4.
  • [418] A. Rangel, C. Camerer and P.R. Montague (2008) A framework for studying the neurobiology of value-based decision making. Nat. Rev. Neurosci. 9, pp. 545–556. Cited by: 16.5, 16.6, 16, 16.
  • [419] R. Ranjan, G. Khazen, L. Gambazzi, S. Ramaswamy, S. L. Hill, F. Schürmann and H. Markram (2011) Channelpedia: an integrative and interactive database for ion channels. Front Neuroinform 5, pp. 36. Cited by: 2.3.1, 2.3, 2.4.
  • [420] M. Rapp, Y. Yarom and I. Segev (1994) Physiology, morphology and detailed passive models of guinea-pig cerebellar purkinje cells. J. Physiology 474, pp. 101–118. Cited by: 3.4.
  • [421] R. Ratcliff and G. McKoon (2008) The diffusion decision model: theory and data for two-choice decision tasks. Neural Comput. 20, pp. 873–922. Cited by: 16.4.2, 16.6.
  • [422] R. Ratcliff and J.N. Rouder (1998) Modeling response times for two-choice decisions. Psychol. Sci. 9, pp. 347–356. Cited by: 16.4.2, 16.4.2, 16.6.
  • [423] R. Ratnam and M.E. Nelson (2000) Nonrenewal statistics of electrosensory afferent spike trains: implications for the detection of weak sensory signals. J. Neurosci 10, pp. 6672–6683. Cited by: 7.11, 7.5.2.
  • [424] A.D. Redish, A.N. Elga and D.S. Touretzky (1996) A coupled attractor model of the rodent head direction system. Network 7, pp. 671–685. Cited by: 18.3.2, 18.3.2.
  • [425] D.S. Reich, J.D. Victor and B.W. Knight (1998) The power ratio and the interval map: spiking models and extracellular recordings. J. of Neuroscience 18 (23), pp. 10090–10104. Cited by: 7.5.4.
  • [426] A. Renart, J. de la Rocha, L. Hollender, N. Parta, A. Reyes and K.D. Harris (2010) The asynchronous state in cortical circuits. Science 327, pp. 587–590. Cited by: 12.4.5, 12.5.
  • [427] J. Rettig, F. Wunder, M. Stocker, R. Lichtinghagen, F. Mastiaux, S. Beckh, W. Kues, P. Pedarzani, K. H. Schröter and J. P. Ruppersberg (1992-07) Characterization of a shaw-related potassium channel family in rat brain. EMBO J 11 (7), pp. 2473–86. Cited by: 3.4.
  • [428] I. Reuveni, A. Friedman, Y. Amitai and M. Gutnick (1993) Stepwise repolarization from ca2+ plateaus in neocortical pyramidal cells: evidence for nonhomogeneous distribution of hva ca2+ channels in dendrites. J. Neuroscience 13 (11), pp. 4609–4621. Cited by: 2.15, 2.16.
  • [429] J.N.J. Reynolds and J.R. Wickens (2002) Dopamine-dependent plasticity of corticostriatal synapses. Neural Networks 15, pp. 507–521. Cited by: 19.4, 19.5.
  • [430] L. Ricciardi (1976) Diffusion approximation for a multi-input neuron model. Biol. Cybern. 24, pp. 237–240. Cited by: 13.
  • [431] M. Richardson, N. Brunel and V. Hakim (2003) From subthreshold to firing-rate resonance.. J Neurophysiol 89 (5), pp. 2538–2554. Cited by: 13.6.1, 6.5.
  • [432] M.J.E. Richardson and W. Gerstner (2005) Synaptic shot noise and conductance fluctuations affect the membrane voltage with equal significance. Neural Computation 17, pp. 923–947. Cited by: 13.6.3, 13.6.3.
  • [433] M.J.E. Richardson (2004) The effects of synaptic conductance on the voltage distribution and firing rate of spiking neurons. Physical Review E 69, pp. 51918. Cited by: 13.6.3.
  • [434] M.J.E. Richardson (2007) Firing-rate response of linear and nonlinear integrate-and-fire neurons to modulated current-based and conductance-based synaptic drive. Physical Review E 76, pp. 021919. Cited by: 13.10, 13.8, 13.9, 13.5.2, 13.5.2, 13.5.2, 13.5, 13, 15.2.3, 15.2.3, 15.4, 15.2.
  • [435] M.J.E. Richardson (2009) Dynamics of populations and networks of neurons with voltage-activated and calcium-activated currents. Physical Review E 80, pp. 021928. Cited by: 13.6.1, 13.
  • [436] F. Rieke, D. Warland, R. de Ruyter van Steveninck and W. Bialek (1996) Spikes - exploring the neural code. MIT Press, Cambridge, MA. Cited by: 7.2.1, 7.6.1, 7.6.2, 7.6.2, 7.6.2, 7.6.2, 7.7.
  • [437] F. Rieke (1997) Spikes : exploring the neural code. MIT Press, Cambridge, Mass.. Cited by: 10.5, 11.3.1, 11.3.1, 11.3.2, 11.3, 11, 11, 11.
  • [438] J. Rinzel and G. B. Ermentrout (1998) Analysis of neural excitability and oscillations. Cambridge, pp. 251–291. Cited by: 4.1.1, 4.7, 4.7.
  • [439] J. Rinzel (1985) Excitation dynamics: insights from simplified membrane models. Theoretical Trends in Neuroscience: Federation Proceedings 44 (15), pp. 2944–2946. Cited by: 4.2.2.
  • [440] H. Risken (1984) The fokker planck equation: methods of solution and applications. Springer-Verlag, Berlin. Cited by: 13.
  • [441] R. Ritz and T.J. Sejnowski (1997) Synchronous oscillatory activity in sensory systems: new vistas on mechanisms. Current Opinion in Neurobiology 7, pp. 536–546. Cited by: 20.4.
  • [442] P.D. Roberts and C.C. Bell (2000) Computational consequences of temporally asymmetric learning rules: II. Sensory image cancellation. Computational Neuroscience 9, pp. 67–83. Cited by: 19.5.
  • [443] J.D. Roitman and M.N. Shadlen (2002) Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task. J. Neurosci. 22, pp. 9475–9489. Cited by: 16.3, 16.1.2, 16.1.2, 16.1, 16.2.
  • [444] R. Romo and E. Salinas (2003) Flutter discrimination: neural codes, perception, memory and decision making. Nat. Rev. Neurosci. 4, pp. 203–218. Cited by: 16.6.
  • [445] B. Rosin, M. Slovik, R. Mitelman, M. Rivlin-Etzion, S.N. Haber, Z. Israel, E. Vaadia and H. Bergman (2011) Closed-loop deep brain stimulation is superior in ameliorating parkinsonism. Neuron 72, pp. 370–384. Cited by: 20.3, 20.3.
  • [446] J. P. Rospars and P. Lansky (1993) Stochastic model neuron without resetting of dendritic potential: application to the olfactory system. Biol. Cybern. 69, pp. 283–294. Cited by: 6.4.4.
  • [447] A. Roxin and A. Ledberg (2008) Neurobiological models of two-choice decision making can be reduced to a one-dimensional nonlinear diffusion equation. PLOS Comput. Biol. 4, pp. e1000046. Cited by: 16.4.2, 16.6.
  • [448] J. Rubin, D. D. Lee and H. Sompolinsky (2001) Equilibrium properties of temporally asymmetric Hebbian plasticity. Physical Review Letters 86, pp. 364–367. Cited by: 19.5.
  • [449] J.E. Rubin and D. Terman (2004) High frequency stimulation of the subthalamic nucleus eliminates pathological thalamic rhythmicity in a computational model. J. Comput. Neurosci. 16, pp. 211–235. Cited by: 20.3, 20.3, 20.4.
  • [450] N. Rust, V. Mante, E. Simoncelli and J.A. Movshon (2006) How MT cells analyze the motion of visual patterns. Nature Neuroscience 11, pp. 1421–1431. Cited by: 10.2.4.
  • [451] N. H. Sabah and K. N. Leibovic (1969) Subthreshold oscillatory responses of the hodgkin-huxley cable model for the squid giant axon.. Biophys J 9 (10), pp. 1206–1222. Cited by: 6.5.
  • [452] M. Sahani and J. Linden (2003) Evidence optimization techniques for estimating stimulus-response functions. NIPS 15. Cited by: 10.2.2.
  • [453] S. Sakata and K.D. Harris (2009) Laminar structure of spontaneous and sensory-evoked population activity in auditory cortex. Neuron 64, pp. 298–300. Cited by: 15.2, 15.1.
  • [454] C.D. Salzman, K.H. Britten and W.T. Newsome (1990) Cortical microstimulation influences perceptual judgements of motion directions. Nature 346, pp. 174–177. Cited by: 16.2, 16.1.1, 16.1.1, 16.1.
  • [455] A.G. Sanfey and L.J. Chang (2008) Multiple systems in decision making. Ann. N.Y. Acad. Sci 1128, pp. 53–62. Cited by: 16.5, 16.
  • [456] E. Schneidman, B. Freedman and I. Segev (1998) Ion channel stochasticity may be critical in determining the reliability and precision of spike timing. Neural Computation 10, pp. 1679–1703. Cited by: 7.1.1.
  • [457] B. Schrauwen and J. Campenhout (2007) Linking non-binned spike train kernels to several existing spike train metrics. Neurocomputing 70 (7-9), pp. 1247–1253. Cited by: 10.5.
  • [458] S. Schreiber, J. Fellous, D. Whitmer, P. Tiesinga and T. J. Sejnowski (2003) A new correlation-based measure of spike timing reliability. Neurocomputing 52 (54), pp. 925–931. Cited by: 10.5.
  • [459] E. Schrödinger (1915) Zur Theorie der Fall- und Steigversuche and Teilchen mit Brownscher Bewegung. Physikalische Zeitschrift 16, pp. 289–295. Cited by: 8.4.2.
  • [460] W. Schultz, P. Dayan and R.R. Montague (1997) A neural substrate for prediction and reward. Science 275, pp. 1593–1599. Cited by: 19.15, 19.4, 19.5.
  • [461] W. Schultz (2007-05) Behavioral dopamine signals. Trends in Neurosciences 30 (5), pp. 203–210. Cited by: 19.4, 19.5.
  • [462] W. Schultz (2010) Dopamine signals for reward value and risk: basic and recent data. Behavioral and Brain Functions 6, pp. 24. Cited by: 19.4, 19.5.
  • [463] T. Schwalger, K. Fisch, J. Benda and B. Lindner (2010) How noisy adaptation in neurons shapes interspike interval histograms and correlations. PLOS Comput. Biol., pp. e1001026. Cited by: 7.5.2.
  • [464] I. Segev, J. Rinzel and G. M. Shepherd (1994) The theoretical foundation of dendritic function. MIT Press. Cited by: 3.5.
  • [465] T. J. Sejnowski and G. Tesauro (1989) The Hebb rule for synaptic plasticity: algorithms and implementations. in J. H. Byrne and W. O. Berry (Eds.), Neural Models of Plasticity, pp. 94–103. Cited by: 19.2.1.
  • [466] T. J. Sejnowski (1999) The book of hebb. Neuron 24, pp. 773–776. Cited by: 19.5.
  • [467] T. Sejnowski (1977) Storing covariance with nonlinearly interacting neurons. J. Mathematical Biology 4, pp. 303–321. Cited by: 19.2.1, 19.5.
  • [468] W. Senn, M. Tsodyks and H. Markram (2001) An algorithm for modifying neurotransmitter release probability based on pre- and postsynaptic spike timing. Neural Computation 13, pp. 35–67. Cited by: 19.2.3, 19.5.
  • [469] W. Senn (2002) Beyond spike timing: the role of non-linear plasticity and unreliable synapses. Biological Cybernetics 87, pp. 344–355. Cited by: 19.2.3.
  • [470] M. N. Shadlen and W. T. Newsome (1994) Noise, neural codes and cortical organization. Current Opininon in Neurobiology 4, pp. 569–579. Cited by: 7.7, 8.3, 8.3.
  • [471] C.J. Shatz (1992) The developing brain. Sci. Am. 267, pp. 60–67. Cited by: 19.1.
  • [472] K.V. Shenoy, M.T. Kaufman, M. Sahani and M.M. Churchland (2011) A dynamical systems view of motor preparation: implications for neural prosthetic system design. Progr. Brain Res. 192, pp. 33–58. Cited by: 20.1.2, 20.1.2.
  • [473] S. Shoham (2001) Advances towards an implantable motor cortical interface. Ph.D. Thesis, The University of Utah. Cited by: 11.
  • [474] O. Shriki, D. Hansel and H. Sompolinsky (2003) Rate models for conductance-based cortical neuronal networks. Neural Computation 15, pp. 1809–1841. Cited by: 18.4, 18.9, 18.1.1, 18.1.1, 18.2.3.
  • [475] W. M. Siebert and P. R. Gray (1963) Random process model for the firing pattern of single auditory nerve fibers. Q. Prog. Rep. Lab. of Elec. MIT 71, pp. 241. Cited by: 9.1.1.
  • [476] A.J.F. Siegert (1951) On the first passage time probability problem. Phys. Rev. 81, pp. 617–623. Cited by: 12.4.3, 12.5, 13.3.1, 8.4.3.
  • [477] G. Silberberg, M. Bethge, H. Markram, K. Pawelzik and M. Tsodyks (2004) Dynamics of population rate codes in ensembles of neocortical neurons. J. Neurophysiology 91, pp. 704–709. Cited by: 13.5.2, 15.2.3, 15.4.
  • [478] E.P. Simoncelli, L. Paninski, J. Pillow and O. Schwarz (2004) Characterization of neural responses with stochastic stimuli. in M. Gazzaninga (Ed.), The cognitive neurosciences, Cited by: 11.2.1, 11, 15.3.3, 15.4.
  • [479] W. Singer (1993) Synchronization of cortical activity and its putative role in information processing and learning. Annu. Rev. Physiol. 55, pp. 349–374. Cited by: 20.2, 20.4.
  • [480] W. Singer (2007) Binding by synchrony. Scholarpedia 2, pp. 1657. Cited by: 20.2, 20.4.
  • [481] L. Sirovich and B. W. Knight (1977) On subthreshold solutions of the hodgkin-huxley equations. Proceedings of the National Academy of Sciences 74 (12), pp. 5199–5202. Cited by: 6.5.
  • [482] J. Sjöström and W. Gerstner (2010) Spike-timing dependent plasticity. Scholarpedia 5, pp. 1362. Cited by: 19.1.2, 19.5, 19.5.
  • [483] P.J. Sjöström, G.G. Turrigiano and S.B. Nelson (2001) Rate, timing, and cooperativity jointly determine cortical synaptic plasticity. Neuron 32, pp. 1149–1164. Cited by: 19.8, 19.1.2, 19.2.3, 19.2.3, 19.2.3, 19.5, 20.2.4, 20.2.4.
  • [484] A. Smith and E. Brown (2003) Estimating a state-space model from point process observations. Neural Computation 15, pp. 965–991. Cited by: 10.2.4.
  • [485] D. Smyth, B. Willmore, G. E. Baker, I. D. Thompson and D. J. Tolhurst (2003-06) The receptive-field organization of simple cells in primary visual cortex of ferrets under natural scene stimulation. Journal of Neuroscience 23 (11), pp. 4746–4759. Cited by: 10.2.2.
  • [486] W. R. Softky (1995) Simple codes versus efficient codes. Current Opinion in Neurobiology 5, pp. 239–247. Cited by: 7.7.
  • [487] H. Sompolinksy, A. Crisanti and H.J. Sommers (1988) Chaos in random neural networks. Physical Review Letters 61, pp. 259–262. Cited by: 12.4.4, 12.5, 20.1.2, 20.4.
  • [488] H. Sompolinsky and I. Kanter (1986) Temporal association in asymmetric neural networks. Phys. Rev. Lett. 57, pp. 2861–2864. Cited by: 17.4, 19.5.
  • [489] S. Song, K.D. Miller and L.F. Abbott (2000) Competitive Hebbian learning through spike-time-dependent synaptic plasticity. Nature Neuroscience 3, pp. 919–926. Cited by: 19.2.2, 19.3.2, 19.3.3, 19.5.
  • [490] C.S. Soon, M. Brass, H.J. Heinze and J.D. Haynes (2008) Unconscious determinants of free decisions in the human brain. Nat. Neurosci. 11, pp. 543–545. Cited by: 16.11, 16.5.1, 16.5.1, 16.5.2, 16.5.2, 16.6.
  • [491] M. Spiridon, C. Chow and W. Gerstner (1998) Frequency spectrum of coupled stochastic neurons with refractoriness. in L. Niklasson, M. Bodén and T. Ziemke (Eds.), ICANN’98, pp. 337–342. Cited by: 14.6.
  • [492] M. Spiridon and W. Gerstner (2001) Effect of lateral connections on the accuracy of the population code for a network of spiking neurons. Network: Computation in Neural Systems 12, pp. 409–421257–272. Cited by: 18.11.
  • [493] L. Srinivasan and E. N. Brown (2007) A state-space framework for movement control to dynamic goals through brain-driven interfaces. Biomedical Engineering, IEEE Transactions on 54 (3), pp. 526–535. Cited by: 11.
  • [494] R. B. Stein (1965) A theoretical analysis of neuronal variability. Biophys. J. 5, pp. 173–194. Cited by: 1.6, 6.5, 8.2, 8.
  • [495] R. B. Stein (1967) Some models of neuronal variability. Biophys. J. 7, pp. 37–68. Cited by: 1.3.3, 1.6, 6.5, 8.2, 8.
  • [496] R. B. Stein (1967) The information capacity of nerve cells using a frequency code.. Biophys. J. 7, pp. 797–826. Cited by: 6.5.
  • [497] P. N. . Steinmetz, A. Roy, P. J. Fitzgerald, S. S. Hsiao, K.O. Johnson and E. Niebur (2000) Attention modultaes synchronized neuronal firing in primate somatosensory cortex. Nature 404, pp. 187–190. Cited by: 7.6.2.
  • [498] C. F. Stevens and A. M. Zador (1998) Novel integrate-and-fire like model of repetitive firing in cortical neurons. Proc. of the 5th Joint Symposium on Neural Computation, Cited by: 4..
  • [499] S. H. Strogatz (1994) Nonlinear dynamical systems and chaos. Addison Weslsy, Reading MA. Cited by: 4.7, 5.4.
  • [500] J.R. Stroop (1935) Studies of interference in serial verbal reactions. J. Exp. Psychology 18, pp. 643–662. Cited by: 17.1.
  • [501] G. Stuart, N. Spruston and M. Häusser (2007) Dendrites. 2nd edition, Oxford University Press, Oxford. Cited by: 3.5.
  • [502] D. Sussillo and L.F. Abbott (2009) Generating coherent patterns of activity from chaotic neural networks. Neuron, pp. 544–447. Cited by: 20.1.1, 20.4.
  • [503] D. Sussillo and O. Barak (2013) Opening the black box: low-dimensional dynamics in high-dimensional recurrent neural networks. Neural Comput. 25, pp. 626–649. Cited by: 20.4.
  • [504] P. Tass, D. Smirnov, A. Karavaev, U. Barnikol, T. Barnikol, I. Adamchic, C. Hauptmann, N. P. amd M. Maarouf, V. Sturm, H.-J. Freund and B. Bezruchko (2010) The causal relationship between subcortical local field potential oscillations and parkinsonian resting tremor. J. Neur. Eng. 7, pp. 016009. Cited by: 20.2, 20.3.
  • [505] P.A. Tass, I. Adamchic, H.-J. Freund, T. von Stackelberg and C. Hauptmann (2012) Counteracting tinnitus by acoustic coordinated reset neuromodulation. Restor. Neurol. Neurosci, 30, pp. 137–159. Cited by: 20.3.
  • [506] P.A. Tass (2003) A model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural subpopulations. Biol. Cybern. 89, pp. 81–88. Cited by: 20.12, 20.3, 20.3, 20.3, 20.4.
  • [507] P. A. Tass, L. Qin, C. Hauptmann, S. Dovero, E. Bezard, T. Boraud and W. G. Meissner (2012) Coordinated reset has sustained aftereffects in parkinsonian monkeys. Annals of neurology 72 (5), pp. 816–820. Cited by: 20.13, 20.3, 20.3, 20.3.
  • [508] J. S. Taube and R. U. Muller (1998) Comparisons of head direction cell activity in the postsubiculum and anterior thalamus of freely moving rats. Hippocampus 8, pp. 87–108. Cited by: 18.3.2.
  • [509] T. Tchumatchenko, A. Malyshev, F. Wolf and M. Volgushev (2011) Ultrafast population encoding by cortical neurons. J. Neurosci. 31, pp. 12171–12179. Cited by: 15.4, 15.1, 15.4.
  • [510] F. Theunissen and J.P. Miller (1995) Temporal encoding in nervous systems: a rigorous definition. J. Comput. Neurosci, 2, pp. 149–162. Cited by: 7.6.2, 7.6.2.
  • [511] R. F. Thompson (1993) The brain. 2nd edition, W. H. Freeman and Company, New York. Cited by: 1.6.
  • [512] S. Thorpe, D. Fize and C. Marlot (1996) Speed of processing in the human visual system. Nature 381, pp. 520–522. Cited by: 7.6.1, 7.6.2.
  • [513] P. H. E. Tiesinga (2004-03) Chaos-induced modulation of reliability boosts output firing rate in downstream cortical areas. Physical review E 69 (3 Pt 1), pp. 031912. Cited by: 10.5.
  • [514] M. Toledo-Rodriguez, B. Blumenfeld, C. Wu, J. Luo, B. Attali, P. Goodman and H. Markram (2004) Correlation maps allow neuronal electrical properties to be predicted from single-cell gene expression profiles in rat neocortex. Cerebral Cortex 14, pp. 1310–1327. Cited by: 1.10, 1.3, 2.3.1, 3.4.
  • [515] J. Touboul (2009) Importance of the cutoff value in the quadratic adaptive integrate-and-fire model. Neural Computation 21, pp. 2114–2122. Cited by: 5.2.
  • [516] J. Touboul and R. Brette (2008) Dynamics and bifurcations of the adaptive exponential integrate-and-fire model. Biological Cybernetics 99, pp. 319–334. Cited by: 6.2.2.
  • [517] M. J. Tovee and E. T. Rolls (1995) Information encoding in short firing rate epochs by single neurons in the primate temporal visual cortex. Visual Cognition 2 (1), pp. 35–58. Cited by: 7.6.2.
  • [518] R.D. Traub (2006) Fast oscillations. Scholarpedia 1, pp. 1764. Cited by: 20.2.
  • [519] A. Treves (1993) Mean-field analysis of neuronal spike dynamics. Network 4, pp. 259–284. Cited by: 12.2, 14.2.3, 17.4.
  • [520] T. W. Troyer and K.D. Miller (1997) Physiological gain leads to high ISI variability in a simple model of a cortical regular spiking cell. Neural Computation 9, pp. 971–983. Cited by: 8.3, 8.3.
  • [521] W. Truccolo, U. T. Eden, M. R. Fellows, J. P. Donoghue and E. N. Brown (2005) A point process framework for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects. Journal of Neurophysiology 93 (2), pp. 1074–1089. Cited by: 10.1, 10.2.1, 10.2.2, 10.5, 11.12, 11.3.3, 11.3.3, 11, 9.2, 9.
  • [522] M. Tsodyks and M.V. Feigelman (1986) The enhanced storage capacity in neural networks with low activity level. Europhys. Lett. 6, pp. 101–105. Cited by: 17.2.6, 17.4.
  • [523] M. Tsodyks, I. Mitkov and H. Sompolinsky (1993) Patterns of synchrony in inhomogeneous networks of oscillators with pulse interaction. Phys. Rev. Lett. 71, pp. 1281–1283. Cited by: 12.2.2, 14.2.3.
  • [524] M. Tsodyks, W.E. Skaggs, T.J. Sejnowski and B.L. McNaughton (1997) Paradoxical effects of external modulation of inhibitory interneurons. J. Neurosci. 17, pp. 4382–4388. Cited by: 18.2.4, 20.1.2.
  • [525] H. C. Tuckwell (1988) Introduction to theoretic neurobiology. Cambridge Univ. Press, Cambridge. Cited by: 8.3.
  • [526] H. C. Tuckwell (1989) Stochastic processes in the neurosciences. SIAM, Philadelphia. Cited by: 8.
  • [527] G. E. Uhlenbeck and L. S. Ornstein (1930) On the theory of the Brownian motion. Phys. Rev 36, pp. 823–841. Cited by: 8.1.1, 8.4, 8.
  • [528] V. Uzzell and E.J. Chichilnisky (2004) Precision of spike trains in primate retinal ganglion cells. Journal of Neurophysiology 92, pp. 780–789. Cited by: 11.7.
  • [529] N. G. van Kampen (1992) Stochastic processes in physics and chemistry. 2nd edition, North-Holland, Amsterdam. Cited by: 14.5.2, 14.5.2, 8.1.1, 8.4.3, 8.4, 8, 9.1.1, 9.4.1, 9.
  • [530] M. C. W. van Rossum, G. Q. Bi and G. G. Turrigiano (2000) Stable Hebbian learning from spike timing-dependent plasticity. J. Neuroscience 20, pp. 8812–8821. Cited by: 19.5.
  • [531] M. C. W. van Rossum (2001) A novel spike distance. Neural Computation 13, pp. 751–763. Cited by: 10.3.4, 10.5.
  • [532] C. van Vreeswijk and H. Sompolinsky (1996) Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science 274, pp. 1724–1726. Cited by: 12.3.4, 12.4.4, 12.4.5, 12.5.
  • [533] C. van Vreeswijk and H. Sompolinsky (1998) Chaotic balanced state in a model of cortical circuits. Neural Computation 10, pp. 1321–1371. Cited by: 12.4.5, 12.5.
  • [534] J.D. Victor and K.P. Purpura (1997) Metric-space analysis of spike trains: theory, algorithms and application. Network: Computation in Neural Systems 8, pp. 127–164. Cited by: 10.5.
  • [535] J. D. Victor and K. Purpura (1996) Nature and precision of temporal coding in visual cortex: a metric-space analysis. Journal of Neurophysiology 76 (2), pp. 1310–1326. Cited by: 10.3.4, 10.5.
  • [536] M. Vidne, Y. Ahmadian, J. Shlens, JonathanW. Pillow, J. Kulkarni, AlanM. Litke, E.J. Chichilnisky, E. Simoncelli and L. Paninski (2012) Modeling the impact of common noise inputs on the network activity of retinal ganglion cells. Journal of Computational Neuroscience 33 (1), pp. 97–121. Cited by: 10.2.4, 11.2.2, 11.4.
  • [537] T. P. Vogels and L.F. Abbott (2005) Signal propagation and logic gating in networks of integrate-and-fire neurons. J. Neurosci. 25, pp. 10786–10795. Cited by: 12.4.4, 12.4.5.
  • [538] T. P. Vogels and L.F. Abbott (2009) Gating multiple signals through detailed balance of excitation and inhibition in spiking networks. Nature Neurosci. 12, pp. 438–491. Cited by: 12.4.4, 12.4.5.
  • [539] T. Vogels, H. Sprekeler, F. Zenke, C. Clopath and W. Gerstner (2011) Inhibitory plasticity balances excitation and inhibition in sensory pathways and memory networks. Science 334, pp. 1569–1573. Cited by: 12.18, 12.3.4, 20.1.2, 7.5.
  • [540] C. von der Malsburg (1973) Self-organization of orientation selective cells in the striate cortex. Kybernetik 14, pp. 85–100. Cited by: 19.5.
  • [541] C. von der Malsburg (1981) The correlation theory of brain function.. Internal Report Technical Report 81-2, MPI für Biophysikalische Chemie, Göttingen. Cited by: 7.6.2.
  • [542] H.-X. Wang, R.C. Gerkin, D.W. Nauen and G.-Q. Wang (2005) Coactivation and timing-dependent integration of synaptic potentiation and depression. Nature Neuroscience 8, pp. 187–193. Cited by: 19.2.3, 19.2.3.
  • [543] X.-J. Wang (2002) Probabilistic decision making by slow reverberation in cortical circuits. Neuron 36, pp. 955–968. Cited by: 16, 16.5, 16.2, 16.4.1, 16.6.
  • [544] Y. Wang, A. Gupta, M. Toledo-Rodriguez, C.Z. Wu and H. Markram (2002) Anatomical, physiological, molecular and circuit properties of nest basket cells in the developing somatosensory cortex. Cerebral Cortex 12, pp. 395–410.
  • [545] S. G. Waxman (1980) Determinants of conduction velocity in myelinated nerve fibers. Muscle & nerve 3 (2), pp. 141–150. Cited by: 3.3.2.
  • [546] U. Wehmeier, D. Dong, C. Koch and D. van Essen (1989) Modeling the mammalian visual system. Methods in Neuronal Modeling, pp. 335–359. Cited by: 4..
  • [547] T.F. Weiss (1966) A model of the peripheral auditory system. Kybernetik 3, pp. 153–175. Cited by: 1.6, 6.5, 6.5.
  • [548] J.P. Welsh, E.J. Lang and I. S. nd R. Llinas (1995) Dynamic organization of motor control within the olivocerebellar system. Nature 374, pp. 453–457. Cited by: 20.2.
  • [549] D. J. Willshaw, O. P. Bunemann and H. C. Longuet-Higgins (1969) Non-holographic associative memory. Nature 222, pp. 960–962. Cited by: 17.2, 17.4.
  • [550] D. J. Willshaw and C. von der Malsburg (1976) How patterned neuronal connections can be set up by self-organization. Proc. R. Soc. (London) Ser. B 194, pp. 431–445. Cited by: 19.5.
  • [551] C.J. Wilson, B. Beverlin and T. Netoff (2011) Chaotic desynchronization as the therapeutic mechanism of deep brain stimulation. Front. Syst. Neurosci. 5, pp. 50. Cited by: 20.3, 20.3, 20.4.
  • [552] H. R. Wilson and J. D. Cowan (1972) Excitatory and inhibitory interactions in localized populations of model neurons.. Biophys. J. 12, pp. 1–24. Cited by: 12.2, 12.5, 13.1, 14.1.2, 14.1.3, 14.4.2, 14, 14, 15.3.1.
  • [553] H. R. Wilson and J. D. Cowan (1973) A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik 13, pp. 55–80. Cited by: 12.2, 15.3.1, 18.1, 18.2.3, 18.2.4.
  • [554] M. A. Wilson and B. L. McNaughton (1993) Dynamics of the hippocampal ensemble code for space. Science 261, pp. 1055–1058. Cited by: 7.6.1.
  • [555] A. T. Winfree (1980) The geometry of biological time. Springer-Verlag, Berlin Heidelberg New York. Cited by: 20.2.3, 20.4.
  • [556] L. Wiskott and T.J. Sejnowski (1998) Constraint optimization for neural map formation: a unifying framework for weight growth and normalization. Neural Computation 10, pp. 671–716. Cited by: 19.5.
  • [557] L. Wolff and B. Lindner (2011) Mean, variance, and autocorrelation of subthreshold potential fluctuations driven by filtered conductance shot noise. Neural Comput. 22, pp. 94–120. Cited by: 13.6.3.
  • [558] K.F. Wong and X.J. Wang (2006) A recurrent network mechanism of time integration in perceptual decisions. J. Neurosci. 26, pp. 1314–1328. Cited by: 16.4.1, 16.4.2, 16.6, 16.6.
  • [559] T. A. Woosley and H. Van der Loos (1970) The structural organization of layer iv in the somatosensory region (si) of mouse cerebral cortex: the description of a cortical field composed of discrete cytoarchitectonic units.. Brain Research 17, pp. 205–242. Cited by: 12.1.2.
  • [560] M. Wu, S. David and J. Gallant (2006) COMPLETE functional characterization of sensory neurons by system identification. Annual Review of Neuroscience 29 (1), pp. 477–505. Cited by: 10.2.4.
  • [561] W. Wu and A. Srivastava (2012) Estimating summary statistics in the spike-train space. Journal of computational neuroscience, pp. 1–20. Cited by: 10.3.5.
  • [562] W. M. Yamada, C. Koch and P. R. Adams (1989) Multiple channels and calcium dynamics. Cambridge. Cited by: 2.13, 2.3.3.
  • [563] B. M. Yu, J. P. Cunningham, G. Santhanam, S. I. Ryu, K. V. Shenoy and M. Sahani (2009) Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity. Journal of Neurophysiology 102, pp. 614–635. Cited by: 10.2.4.
  • [564] Y. B. Zel’dovich and D. Frank-Kamenetskii (1938) Thermal theory of flame propagation. Zh. Fiz. Khim 12 (1), pp. 100–105. Cited by: 3.3.1.
  • [565] J.-C. Zhang, P.-M. Lau and G.-Q. Bi (2009) Gain in sensitivity and loss in temporal contrast of STDP by dopaminergic modulation at hippocampal synapses. Proc. Natl. Acad. Sci. USA 106, pp. 13–28–13033. Cited by: 19.16.
  • [566] K. Zhang (1996) Representaton of spatial orientation by the intrinsic dynamics of the head-direction ensemble: a theory. J. Neurosci. 16, pp. 2112–2126. Cited by: 18.3.2, 18.3.2.
  • [567] L.I. Zhang, H.W. Tao, C.E. Holt, W.A.Harris and M.-M. Poo (1998) A critical window for cooperation and competition among developing retinotectal synapses. Nature 395, pp. 37–44. Cited by: 19.1.2, 19.5.
  • [568] M.B. Zugaro, A. Arleo, A. Berthoz and S. I. Wiener (2003) Rapid spatial reorientation and head direction cells. Journal of Neuroscience 23 (8), pp. 3478–3482. Cited by: 18.15, 18.16, 18.3.2, 18.3.2, 18.3.2.